Inter-generational Redistribution in the Great Recession*

Andrew Glover\textsuperscript{a,b} \quad Jonathan Heathcote\textsuperscript{b,c} \quad Dirk Krueger\textsuperscript{c,d,e} \quad José-Víctor Ríos-Rull\textsuperscript{a,b,c,e,f}

January 21, 2011

Abstract

We construct stochastic overlapping-generations general equilibrium models in which households are subject to aggregate shocks that affect both wages and asset prices. We use a calibrated version of the model to quantify how the welfare costs of severe recessions are distributed across different age groups. The model predicts that younger cohorts fare better than older cohorts when the equilibrium decline in asset prices is large relative to the decline in wages. Asset price declines hurt the old, who rely on asset sales to finance consumption, but benefit the young, who purchase assets at depressed prices. In our preferred calibration, asset prices decline more than twice as much as wages, consistently with the experience of the US economy in the Great Recession. A model recession is approximately welfare-neutral for households in the 20-29 age group, but translates into a large welfare loss of around 10 percent of lifetime consumption for households aged 70 and over.

Keywords: Recessions, Overlapping Generations, Asset Prices, Aggregate Risk

JEL Codes: E21, D31, D58, D91

\textsuperscript{*}\textsuperscript{a} University of Minnesota, \textsuperscript{b} Federal Reserve Bank of Minneapolis, \textsuperscript{c} CEPR, \textsuperscript{d} University of Pennsylvania, \textsuperscript{e} NBER, \textsuperscript{f} CAERP. We thank participants of the Wharton Macro Lunch, AEA Meetings in Atlanta, the Progressive Economics Conference at the Richmond FED, the NBER Summer Institute, the Nordic Summer Symposium in Macroeconomics, German Economics Christmas Meeting, 32$^{\text{nd}}$ Encontro Brasileiro de Econometria, ASU, Autonoma de Barcelona, Banco de Portugal, Cemfi, Chicago, Columbia, UC Davis, Hannover, LBS, Miami, NYU and UCL, as well as our discussants David Andolfatto and Larry Jones for helpful comments, and the NSF for financial support. The views expressed herein are those of the authors, and not necessarily those of the Federal Reserve Bank of Minneapolis, or the Federal Reserve System.
1 Introduction

The current economic downturn is the most severe since the Great Depression. Household incomes have fallen significantly below trend and the prices of real estate and stocks have plummeted. The goal of this paper is to explore the welfare consequences of a severe and long-lasting recession that results in large declines in wages and a collapse in asset prices. Our main objective is to study how these welfare costs vary across different age cohorts.

There are good reasons to believe that the welfare effects of large aggregate shocks are unevenly distributed across different generations. Young households have little financial wealth, relative to their labor income, while older households are asset-rich but have little human wealth, measured as the present discounted value of future labor income. In addition, young households potentially gain from future asset price appreciation following an asset price collapse, while older households have less time to wait for asset prices to recover. Thus it is likely that a steep decline in asset prices has more serious welfare implications for older households.

In the next section, we use data from the Survey of Consumer Finances to document how the ratio of labor income to net worth varies over the life-cycle. We then estimate the magnitude of the declines in net worth associated with the current recession, focussing on how these losses vary with the age of a household. To do so we decompose net worth into different types of assets and debts, and estimate losses by applying asset-class specific price deflators to age-group specific portfolios. We find that the average household experienced a decline in net worth of $177,000 between the middle of 2007 and the trough of the asset price decline in the first quarter of 2009. These losses were heavily concentrated among older age groups: households aged 60-69 lost $312,000 on average. Since 2009, asset prices and net worth have recovered somewhat, but remain well below their 2007 values.

These empirical facts suggest that the welfare losses from large economic downturns are unevenly distributed across different age cohorts in the population. However, a more complete welfare analysis requires forecasts for the future evolution of labor income and asset prices, and an understanding of how agents will optimally adjust savings behavior in response to expected future wage and price changes. In the remainder of the paper we therefore construct a stochastic general equilibrium model with overlapping generations in which households of different ages are subject to large aggregate shocks that affect both wages and asset prices. We use a realistically calibrated version of the model to assess the distributional consequences of severe recessions. One question of
particular interest that we can ask within the context of this model is whether young people might actually be better off if they become economically active in the midst of a large and persistent economic downturn.

The answer to this question is that it depends on the size of the decline in equilibrium asset prices, relative to the decline in wages, in response to a negative aggregate shock. If older generations have a strong incentive to sell their assets in the downturn (e.g., because they strongly value smooth consumption profiles) then asset prices decline more strongly than wages in equilibrium. This in turn benefits younger generations who buy these assets at low prices, more than compensating for the fall in wages they experience. We demonstrate that for plausible parameter values this mechanism can be strong enough to generate welfare gains for the youngest age group. In our preferred calibration this cohort suffers mild losses, however. Older cohorts, on the other hand, unambiguously face massive declines in welfare from a large economic downturn.


Second, a number of papers study the distributional consequences across age cohorts and asset pricing implications of large aggregate shocks. Our analysis is similar in spirit to Doepke and Schneider (2006a,b)'s study of the inflationary episode of the 1970's and, to a lesser extent, to Meh, Ríos-Rull, and Terajima (2010). A number of studies employ OLG models to investigate the impact of large swings in the demographic structure of the population on factor and asset prices, as well as on the welfare of different age cohorts. Examples include Attanasio, Kitao, and Violante (2007), Krueger and Ludwig (2007), and Ríos-Rull (2001).

Finally, a recent literature estimates empirical models of aggregate consumption that allows for large declines in aggregate consumption (so called disasters) and uses these estimates in consumption based asset pricing models. See e.g. Barro (2006, 2009), and Nakamura, Steinsson, Barro,
The remainder of this paper is organized as follows. In Section 2 we present life cycle facts on labor income, net worth and portfolio allocations that motivate our quantitative analysis and that we use later to calibrate the model. In Section 3 we set up our model and define a recursive competitive equilibrium. In Section 4 we analyze a sequence of simple examples that can be characterized analytically and that provide crucial insights into the key mechanism of the model. Section 5 is devoted to the calibration of the model and Section 6 reports the findings of our model economies that include environments with multiple assets. Section 8 concludes. Details about the computational approach as well as additional results from the model are relegated to the appendix.

2 Data

We now document the life-cycle profiles for labor income, net worth and portfolio composition that motivate our focus on heterogeneity along the age dimension, and will serve as inputs for the calibration of the model. The need for detailed data on household portfolios leads us to use the Survey of Consumer Finances (SCF). The SCF is the best source of micro data on the assets and debts of U.S. households. One advantage of the survey is that it over-samples wealthy households, using a list based on IRS data. Because the SCF weighting scheme adjusts for higher non-response rates among wealthier households, it delivers higher estimates for average income than other household surveys, such as the CPS or PSID. The survey is conducted every three years, with the most recent survey conducted in 2007, around the peak in asset prices.

We use the SCF to construct life-cycle profiles for labor income, total income, human wealth (the present discounted value of labor earnings) and financial and real net worth (see Table 1). We construct these profiles by averaging across households partitioned into ten year age groups. We divide total income into an asset-type income component, and a residual non-asset-income component, which we call labor income. Two adjustments relative to the SCF concept of household income are made. First, we add an imputation for implicit rents accruing to home owner-occupiers, and Ursua (2010).\textsuperscript{1}

\\textsuperscript{1}The latter paper finds that (on average) aggregate consumption falls by 11\% during a disaster period, that a large part of these consumption drops are reversed in the long run (i.e. there is only a small effect of the consumption disaster on the long run trend of consumption) and that the average length of a disaster period is 6.5 years. Our calibration will imply a consumption process roughly consistent with these findings.

\textsuperscript{2}Asset income is defined as interest or dividend income minus interest payment on debts, income from capital gains and asset sales, one third of business, farm or self-employment income, private retirement income, and imputed rents from owner-occupied housing. Non-asset-income is all other income, which includes wage and salary income, two-thirds of business, farm or self-employment income, social security income, and a variety of public and private transfers.
and attribute these rents to asset income. Second, we subtract interest payments on debts, thinking of these as a negative component of asset income. We measure net worth as the value of all financial and non-financial assets, less the value of all liabilities. Our SCF-based measure of net worth excludes the present value of future pensions associated with defined benefit private pension plans and social security.

In 2007 average household income was $83,430, while average household net worth was $555,660, for a net worth to income ratio of 6.66. The share of net asset income in total income was 0.16. Average household assets were $659,000, with an average rate of return of 3.1%. Average household debts were $103,300, with an average interest rate on debts of 6.4%. The fact that the average interest rate paid on debts exceeds the rate paid on assets explains why young households have negative net asset income, despite having positive net worth.

<table>
<thead>
<tr>
<th>Age of Head</th>
<th>Total Income</th>
<th>Labor Income</th>
<th>Asset Income</th>
<th>Assets</th>
<th>Debts</th>
<th>Net Worth</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>83.43</td>
<td>70.07</td>
<td>13.36</td>
<td>659.00</td>
<td>103.34</td>
<td>555.66</td>
</tr>
<tr>
<td>20-29</td>
<td>38.83</td>
<td>39.68</td>
<td>-0.85</td>
<td>130.66</td>
<td>53.30</td>
<td>77.36</td>
</tr>
<tr>
<td>30-39</td>
<td>69.83</td>
<td>68.68</td>
<td>1.15</td>
<td>335.87</td>
<td>136.12</td>
<td>199.75</td>
</tr>
<tr>
<td>40-49</td>
<td>93.40</td>
<td>84.97</td>
<td>8.43</td>
<td>598.21</td>
<td>132.62</td>
<td>465.59</td>
</tr>
<tr>
<td>50-59</td>
<td>117.97</td>
<td>99.56</td>
<td>18.41</td>
<td>959.77</td>
<td>133.24</td>
<td>826.53</td>
</tr>
<tr>
<td>60-69</td>
<td>109.06</td>
<td>76.15</td>
<td>32.90</td>
<td>1156.96</td>
<td>104.10</td>
<td>1052.86</td>
</tr>
<tr>
<td>70+</td>
<td>57.56</td>
<td>34.46</td>
<td>23.11</td>
<td>756.76</td>
<td>28.48</td>
<td>728.28</td>
</tr>
</tbody>
</table>

Figure 1 plots the life-cycle profiles for labor income and net worth. Income follows the familiar hump-shape over the life-cycle, while net worth peaks somewhat later. For 20-29 year olds, average net worth is 1.9 times average labor income, while for household 70 and older, the corresponding ratio is 21.1. Thus the old are much more exposed to fluctuations in asset prices than the young. We will ensure, by force of calibration, that the life cycle patterns of labor income and net worth in our structural OLG model are identical to their empirical counterparts documented here.

---

3We set imputed rents equal to the value of primary residence times the rate of return on all other assets. This rate of return is computed as asset income (excluding imputed rents) dividend by aggregate assets (excluding the value of primary residences and the value of vehicles).

4Since income questions refer to the previous calendar year, while questions about wealth are contemporaneous, we adjust income measures for CPI inflation between 2006 and 2007.
While Figure 1 suggests large losses for older households from a slump in asset prices, the risk composition of net worth also varies quite substantially with age. Thus to accurately estimate losses by age group, we further decompose portfolios by age group, and examine the patterns for relative price changes across different asset classes. In Table 2 we decompose total net worth into risky net worth and safe net worth, where we define risky net worth as the value of stocks, residential real estate, non-corporate business, and non-residential property. We define safe net worth as the value of all other assets, less all debts. In aggregate, risky net worth is 93.9 of aggregate net worth. However, among 30-39 year olds, the corresponding ratio is 140.4%, while among those aged 70 or older, it is only 79.2%. These three ratios reflect three facts: (i) in aggregate, net household holdings of safe assets are very small, (ii) younger households are short in safe assets, because they tend to have lots of mortgage debt (which we classify as a riskless liability) and little in the way of financial assets, and (iii) older households tend to have little debt, and lots of assets, including significant holdings of riskless financial assets.

Our next task is to estimate price declines for each component of net worth. The 2007 SCF

---

5For our purposes, stocks include stocks held directly or indirectly through mutual funds and retirement accounts, and also includes closely-held equity. The category “bonds, cash, CDs” includes bonds (directly or indirectly held), transaction accounts, CDs, and the cash value of life insurance.
Table 2: **Portfolio Shares as a Percentage of Net Worth**

<table>
<thead>
<tr>
<th>Age of Head</th>
<th>(1) Stocks Res, real estate</th>
<th>(2) Non-corp bus.</th>
<th>(3) Non-res prop.</th>
<th>(4) RISKY Bonds N.W.</th>
<th>(5) + CDs</th>
<th>(6) Cars</th>
<th>(7) Other assets</th>
<th>(8) Debts</th>
<th>(9) SAFE N.W.</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>30.28</td>
<td>46.99</td>
<td>12.87</td>
<td>3.80</td>
<td>93.95</td>
<td>16.98</td>
<td>3.45</td>
<td>4.23</td>
<td>-18.60</td>
</tr>
<tr>
<td>20-29</td>
<td>13.20</td>
<td>77.67</td>
<td>43.31</td>
<td>1.28</td>
<td>135.46</td>
<td>13.66</td>
<td>4.51</td>
<td>-68.90</td>
<td>-35.46</td>
</tr>
<tr>
<td>30-39</td>
<td>26.27</td>
<td>96.47</td>
<td>12.73</td>
<td>4.97</td>
<td>140.44</td>
<td>13.80</td>
<td>9.73</td>
<td>4.19</td>
<td>-68.15</td>
</tr>
<tr>
<td>40-49</td>
<td>30.41</td>
<td>57.62</td>
<td>12.55</td>
<td>3.81</td>
<td>104.38</td>
<td>15.17</td>
<td>4.44</td>
<td>4.49</td>
<td>-28.48</td>
</tr>
<tr>
<td>50-59</td>
<td>32.70</td>
<td>42.40</td>
<td>13.53</td>
<td>3.72</td>
<td>92.35</td>
<td>17.02</td>
<td>2.79</td>
<td>3.96</td>
<td>-16.12</td>
</tr>
<tr>
<td>60-69</td>
<td>32.17</td>
<td>35.62</td>
<td>13.41</td>
<td>4.12</td>
<td>85.31</td>
<td>17.45</td>
<td>2.40</td>
<td>4.73</td>
<td>-9.89</td>
</tr>
<tr>
<td>70+</td>
<td>27.12</td>
<td>39.76</td>
<td>8.98</td>
<td>3.33</td>
<td>79.18</td>
<td>19.26</td>
<td>1.75</td>
<td>3.72</td>
<td>-3.91</td>
</tr>
</tbody>
</table>

Risky Net Worth (5) is equal to the sum of columns (1)+(2)+(3)+(4). Safe Net Worth (10) is the sum of columns (6)+(7)+(8)+(9). Total Net Worth is the sum of columns (5)+(10).

provides a snap-shot of household portfolios in the middle of 2007, roughly when asset prices peaked. The Federal Reserve is conducting a special re-survey of some of the same households, to study the effects of the financial crisis. In the interim, we can get a fairly good sense of the direct redistributive effects of dramatic changes in asset prices by using aggregate asset-class-specific price series to revalue portfolios, thereby constructing estimates for capital losses across the age distribution.

We assume that SCF portfolios reflect the distribution of household net worth in the second quarter of 2007. We then revalue portfolios for each age group for each successive quarter as follows. For all the components of safe net worth (bonds, vehicles, other assets and debts), we assume no price changes. We price stock wealth using the Wilshire 5000 price index, as of the last trading day in the quarter. We price residential real estate using the Case-Shiller National Home Price Index, which is a quarterly, repeat-sales-based index. We price non-residential property using the Moody’s/REAL Commercial Property Price Index, which is a monthly repeat-sales-based index for the prices of apartments, industrial property, commercial property, and retail property. We price non-corporate business wealth using Flow of Funds data. In particular the Flow of Funds reports changes in market values for a variety of asset types by sector. We focus on the asset type “proprietors' investment in unincorporated business” for the household and non-profit sector. Price changes by asset type relative to 2007:2 are reported in Table 3. For stocks and residential property, values reached a low point in the first quarter of 2009, with prices respectively 46.9%

---

6 Unfortunately the SCF does not provide much information about precisely when households were interviewed.
and 29.5% below their 2007:2 values. The values of non-corporate business and non-residential property, by contrast, continue to decline through the third quarter of 2009.\(^7\)

<table>
<thead>
<tr>
<th>Table 3: Price Declines Relative to 2007:2 by Risky Asset Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>Stocks</td>
</tr>
<tr>
<td>Res. Real Estate</td>
</tr>
<tr>
<td>Non-corp. Bus.</td>
</tr>
<tr>
<td>Non-Res. Property</td>
</tr>
<tr>
<td>ALTERNATIVE SERIES</td>
</tr>
<tr>
<td>Stocks (Flow of Funds)</td>
</tr>
<tr>
<td>Real Estate (OFHEO)</td>
</tr>
<tr>
<td>Real Estate (Flow of Funds)</td>
</tr>
</tbody>
</table>

We now turn to investigating how these price changes have reduced household net worth by applying the price changes in Table 3 to the life-cycle profiles for aggregate net worth and its decomposition as outlined in Tables 1 and 2.\(^8\) Table 4 reports changes in net worth from 2007:2 by quarter, in the aggregate and by age group. In the first set of columns, we simply report dollar losses across our risky asset types. We then report total dollar losses, total losses as fractions of age-group specific net worth and age-group specific total income, and total losses as a fraction of average total income. In our discussion we place special emphasis on the cumulative price changes as of the first quarter of 2009, since this was the quarter in which portfolio-weighted asset values attained their nadir.

The average household saw a decline in price-change-induced decline in net worth of $177,310 between 2007:2 and 2009:1, which amounted to 32% of 2007:2 net worth, and more than twice average 2007 annual income. Almost half of this total decline was driven by a decline in stock prices, and almost half by a decline in house prices.

Losses varied widely by age. Younger households lost much less, while those in the 60-69 age group lost the most: $311,940 on average, or nearly four times average annual income for this

---

\(^7\) For comparison, Table 3 also reports some alternative price series. The Flow of Funds reports price changes for directly-held corporate equities: this series aligns closely with the Wilshire 5000 index. The Flow of Funds also reports a price series for residential real estate, based on the LoanPerformance Index from First American Corelogic. This series closely tracks the Case-Shiller series. By contrast, the house price series published by OFHEO (based on data from Fannie Mae and Freddie Mac) shows significantly smaller declines in house values.

\(^8\) Of course, this exercise ignores the endogenous response of household portfolios to changing asset prices between 2007 and 2009.
age group. At the same time, differences in portfolio composition were large enough to generate substantial age variation in returns. In particular, because younger households were more leveraged, they lost more as a percentage of their net worth: 30-39 year olds lost 45% of net worth, while households older than 70 lost only 27%. In other words, absent age variation in portfolios, but given the empirical age profile for net worth, the losses experienced by younger households would have been smaller, and those experienced by older households would have been even larger.

Table 4: Estimated Losses by Age Group as of 2009:1

<table>
<thead>
<tr>
<th>Age of Head</th>
<th>Stocks (Dollar Losses, $1,000)</th>
<th>Res. real estate</th>
<th>Non-corp. bus.</th>
<th>Non-res. property</th>
<th>Total Losses</th>
<th>Losses as Percentage of</th>
<th>Net Worth</th>
<th>Income</th>
<th>Avg. Income</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>78.99</td>
<td>77.13</td>
<td>16.78</td>
<td>4.42</td>
<td>177.31</td>
<td>31.9</td>
<td>212.5</td>
<td>212.5</td>
<td></td>
</tr>
<tr>
<td>20-29</td>
<td>4.79</td>
<td>17.75</td>
<td>7.86</td>
<td>0.21</td>
<td>30.60</td>
<td>39.6</td>
<td>78.8</td>
<td>36.7</td>
<td></td>
</tr>
<tr>
<td>30-39</td>
<td>24.64</td>
<td>56.92</td>
<td>5.96</td>
<td>2.08</td>
<td>89.59</td>
<td>44.9</td>
<td>128.3</td>
<td>107.4</td>
<td></td>
</tr>
<tr>
<td>40-49</td>
<td>66.47</td>
<td>79.23</td>
<td>13.70</td>
<td>3.71</td>
<td>163.12</td>
<td>35.0</td>
<td>174.7</td>
<td>195.5</td>
<td></td>
</tr>
<tr>
<td>50-59</td>
<td>126.91</td>
<td>103.50</td>
<td>26.23</td>
<td>6.43</td>
<td>263.07</td>
<td>31.8</td>
<td>223.0</td>
<td>315.3</td>
<td></td>
</tr>
<tr>
<td>60-69</td>
<td>159.01</td>
<td>110.75</td>
<td>33.10</td>
<td>9.08</td>
<td>311.94</td>
<td>29.6</td>
<td>286.0</td>
<td>373.9</td>
<td></td>
</tr>
<tr>
<td>70+</td>
<td>92.73</td>
<td>85.52</td>
<td>15.34</td>
<td>5.07</td>
<td>198.65</td>
<td>27.3</td>
<td>345.1</td>
<td>238.1</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2 presents the losses as a percentage of net worth for additional dates. By the third quarter of 2009, asset prices had partially recovered to around their values in 2008:4, but were still 25.5 percent below their peak values.

3 The Model

Three key facts guide our modeling choices. First, as documented above, there is substantial heterogeneity by household age in labor income and net worth, which translates into age-varying exposure to aggregate wage and asset price risk. Thus, a satisfactory quantitative analysis requires an overlapping generations life-cycle model in which asset prices vary endogenously with aggregate economic conditions. Second, empirical portfolio allocations between risky and riskless assets display significant age heterogeneity, which motivates modelling portfolio choice explicitly. Third, the direct effect of recessions on labor income varies across age groups, largely reflecting the fact that younger workers are disproportionately likely to become unemployed. This motivates

---

9In Section 7 we will empirically document the extent of this age variation in labor income declines in the Great Recession.
considering a version of the model in which recessions change the slope as well as the level of the age-earnings profile.

3.1 Stochastic Structure

Aggregate fluctuations in the model are driven by shocks to aggregate productivity $z$, where $z$ has finite support $Z$, and evolves over time according to a Markov chain with transition matrix $\Gamma_{z,z'}$.

3.2 Technology

A representative firm operates a Cobb-Douglas technology that takes as inputs a fixed factor $K$ and labor $L$ and produces as output a non-storable consumption good $Y$. The firm’s total factor productivity (TFP) varies with the aggregate productivity shock. Thus

$$Y = z K^{\theta} L^{1-\theta}$$

where $\theta \in (0, 1)$ is capital’s share of output. We normalize $K = 1$.

One interpretation of our assumption that capital $K$ is in fixed supply is that $K$ stands in for
non-reproducible land or intangible capital. By making the stock of capital fixed, any changes in
the demand for assets (i.e. claims to the returns to capital) must translate into movements in
asset prices rather than changes in the quantity of capital. This property is important given our
focus on the welfare effects of recessions that are accompanied by large asset price declines. In
the standard frictionless business cycle model, by contrast, capital and consumption are the same
good, and thus the standard model cannot generate any movements in the relative price of capital.

3.3 Endowments and Preferences

Households live for \( I \) periods and then die with certainty. Thus the economy is populated by \( I \)
distinct age cohorts at any point in time. Each age cohort is composed of identical households. In
each period of life households are endowed with one unit of time which they supply to the market
inelastically. Their age and productivity dependent labor productivity profile is given by \( \{\varepsilon_i(z)\}_{i=1}^I \).
Indexing the productivity profile to the aggregate shock allows us to capture heterogeneity across
age groups in the impact of economic downturns on labor income. We normalize units so that
\( \sum_{i=1}^I \varepsilon_i(z) = 1 \) for all \( z \in Z \). Thus the aggregate supply of labor is constant and equal to \( L = 1 \)
at all times. Labor markets are competitive, and therefore the economy-wide wage per efficiency
unit of labor supplied is equal to the marginal product of labor from the production technology:

\[
    w(z) = (1 - \theta)z
\]

Households have standard time-separable preferences over stochastic consumption streams
\( \{c_i\}_{i=1}^I \) that can be represented by

\[
    E \left[ \sum_{i=1}^I \prod_{j=1}^{i} \beta_j u(c_i) \right]
\]

where \( \beta_i \) is the time discount factor between age \( i - 1 \) and \( i \).\(^{10}\) Age-variation in the discount
factor stands in for unmodeled changes in family size and composition, age-specific mortality risk,
and any other factors that generate age variation in the marginal utility of consumption. We will
calibrate the profile \( \{\beta_i\}_{i=1}^I \) so that in our economy replicates the life cycle profile for net worth
documented in SCF data in Section 2.

Expectations \( E(.) \) are taken with respect to the underlying stochastic process governing aggre-

\(^{10}\) We normalize \( \beta_1 = 1 \).
gate risk. The period utility function is of the constant relative risk aversion form:

\[ u(c) = \frac{c^{1-\sigma} - 1}{1 - \sigma} \]

where the parameter \( \frac{1}{\sigma} \) measures the intertemporal elasticity of substitution, and \( \sigma = 1 \) corresponds to log-utility.

### 3.4 Financial Markets

Agents trade financial assets that allow them to transfer resources over time. We consider three alternative market structures that differ in the set of assets that can be traded. In the first, households can save only by purchasing shares of the capital stock, which entitle the owner to capital income. This model allows us to highlight the main mechanism at work in the most transparent way. The second market structure features two assets: leveraged risky equity and riskless bonds. However, households’ portfolio allocations are set exogenously to replicate the portfolio composition across risky and riskless assets by age observed in the SCF. With this version of the model we can assess the quantitative importance of age variation in portfolio shares for the asset pricing and welfare predictions of the model. Finally we consider a third market structure in which the choice of portfolios is endogenous. The point of this economy is to investigate the extent to which we can rationalize observed portfolio choice over the life-cycle, and to document how the ability of generations to trade risk affects equilibrium prices and the distribution of welfare losses from an adverse aggregate shock.

Given that the primary goal of the paper is to assess the distributional implications of severe recession, we will be most interested in the quantitative results for the second economy, because in that economy we will exactly replicate, by force of calibration, both the empirical life cycle profile for net worth and the life cycle profile of portfolio compositions. We therefore consider the second economy as our benchmark.

The one-asset economy is a special case of the two-asset economies in which the aggregate supply of riskless bonds is set to zero and each age group puts 100\% of savings into risky equity. The economies with exogenous and endogenous portfolios differ only with respect to whether the division of household savings between stocks and bonds is specified exogenously or chosen optimally. We will therefore define a recursive competitive equilibrium only once, focusing on the most general model: the two asset economy with endogenous portfolios. Also note that if
the aggregate shock \( z \) can only take two values (the case we will consider in our quantitative experiments below), then the two asset economy is equivalent to a complete markets economy. In Appendix A we show how to map the two asset economy into a complete markets economy with state-contingent share purchases, and in Appendix F we discuss how we exploit this mapping in our computation of the two asset economy with endogenous portfolio choice.

We will now present a recursive definition of competitive equilibrium. The aggregate state of the economy is described by the current aggregate shock \( z \) and the aggregate distribution \( A = (A_1, \ldots, A_I) \) of shares of beginning of the period total wealth across age cohorts, where \( \sum_{i=1}^{I} A_i = 1 \). Newborn households enter the economy with zero initial wealth, so that \( A_1 = 0 \). The individual state variables include a household’s age \( i \) and its individual share of wealth, denoted by \( a \).

The representative firm issues a quantity \( B \) of risk-free bonds at price per unit \( q(z, A) \), each of which is a promise to pay one unit of the consumption good in the next period. Thus aggregate net household interest income is \( B - q(z, A)B \). We treat the supply of debt \( B \) as an exogenous time- and state-invariant parameter of the model. Dividends for the representative firm \( d(z, A) \) are given by aggregate capital income \( \theta z \) plus revenue from debt issuance \( q(z, A)B \) less debt repayment \( B \):

\[
d(z, A) = \theta z - [1 - q(z, A)]B
\]  

Note that returns to equity are risky, while the return to debt is safe and given by the reciprocal of the bond price. The supply of debt \( B \) determines the level of leverage in the economy: the higher is \( B \), the more leveraged and risky are stocks. Let \( p(z, A) \) denote the ex dividend price of equity. The aggregate value of start of period wealth is the value of aggregate payments to asset holders in the period, plus the ex-dividend value of equity:

\[
W(z, A) = p(z, A) + d(z, A) + B = p(z, A) + \theta z + q(z, A) B.
\]

where the second equality follows from the expression for dividends.
3.5 Household Problem

Let \(y_i(z, A, a)\) and \(\lambda_i(z, A, a)\) denote the optimal policy functions for total savings and for the fraction of savings invested in leveraged equity. Let \(c_i(z, A, a)\) and \(a'_i(z, A, z', a)\) denote the associated policy functions for consumption and for shares of next period wealth. The dynamic programming problem of the household reads as:

\[
v_i(z, A, a) = \max_{c, y, \lambda, a'} \left\{ u(c) + \beta_{i+1} \sum_{z' \in Z} \Gamma_{z, z'} v_{i+1}(z', A', a') \right\} \quad \text{s.t.} \quad (2)
\]

\[
c + y = \varepsilon_i(z) w(z) + W(z, A) a
\]

\[
a' = \frac{\left[ \lambda \left[p(z', A') + d(z', A')\right] + (1 - \lambda) \frac{1}{q(z, A)} \right] y}{W(z', A')}
\]

\[
A' = G(z, A, z')
\]

The first constraint (3) is the household’s budget constraint: consumption plus savings must equal earnings plus the household’s share of start of period wealth. The second constraint (4) is the law of motion for the household’s share of individual wealth. This constraint merits some additional explanation. Savings in equity are given by \(\lambda y\), and the gross return on these savings is given by \([p(z', A') + d(z', A')]/p(z, A)\). Savings in bonds are given by \((1 - \lambda)y\) and the gross return on these savings is \(1/q(z, A)\). Thus the numerator on the right hand side of equation (4) is the gross value of the household portfolio in the next period. The household’s share of next period wealth is this value divided by aggregate next period wealth, the denominator on the right hand side of (4). The third constraint is the law of motion for the distribution of wealth, which allows agents to forecast future prices contingent on the sequence for future productivity. Let \(G_i(z, A, z')\) denote the forecast for the share of next period wealth owned by age group \(i\).

Definition 1. A recursive competitive equilibrium is value and policy functions for each age, \(v_i(z, A, a), c_i(z, A, a), y_i(z, A, a), a'_i(z, A, z', a), \lambda_i(z, A, a), \) pricing functions \(w(z), d(z, A), p(z, A), q(z, A)\) and an aggregate law of motion \(G(z, A)\) such that:

1. Given the pricing functions and the aggregate law of motion, the value functions \(\{v_i\}\) solve the recursive problem of the households and \(\{c_i, y_i, a'_i, \lambda_i\}\) are the associated policy functions.

---

\(^{11}\)Households face the additional constraints that consumption must be non-negative, and savings at age \(l\) must be non-negative.
2. Wages and dividends satisfy
\[ w(z) = (1 - \theta)z \quad \text{and} \quad d(z, A) = \theta z - [1 - q(z, A)] B \]

3. Markets clear
\[
\sum_{i=1}^{I} c_i(z, A, A_i) = z
\]
\[
\sum_{i=1}^{I} \lambda_i(z, A, A_i) y_i(z, A, A_i) = p(z, A)
\]
\[
\sum_{i=1}^{I} (1 - \lambda_i(z, A, A_i)) y_i(z, A, A_i) = B q(z, A)
\]

4. The law of motion for the distribution of wealth is consistent with equilibrium decision rules.
\[
\forall (z, A, z')
\]
\[
G_1(z, A, z') = 0 \tag{6}
\]
\[
G_{i+1}(z, A, z') = a'_i(z, A, z', A_i), \ i = 1, ..., I - 1 \tag{7}
\]

4 Developing Intuition: Four Simple Example Economies

In order to understand the key mechanisms at work in our model we now study four simple example economies: a representative agent version of our environment, and three special cases of our general OLG economy. These examples are designed to highlight a) what determines the magnitude of asset price collapses, relative to the decline in output, and b) how a given wage and asset price decline can translate into welfare effects that vary across different generations.

¿From now on assume that the aggregate shock takes only two values \( Z = \{z_l, z_h\} \), where \( z_l \) stands for a severe recession. We will measure the magnitude of the decline in asset prices, relative to output (which is given by \( z \)) by
\[
\xi = \frac{d \ln(p_h/p_l)}{d \ln(z_h/z_l)}
\]
where it is understood that, in general, prices and thus the elasticity $\xi$, are functions of the aggregate state of the economy. An elasticity of $\xi = 3$, for example, indicates that the percentage decline of stock prices in recessions is three times as large as that of output.

4.1 Example I: Representative Agent Model

Our first simple economy is the standard infinitely-lived representative agent Lucas asset pricing model (translated into our physical environment). Given a representative agent, the distribution of wealth is degenerate, and given Markov shocks, the only state variable is current productivity $z$. Furthermore, if aggregate shocks are iid (which we will assume in our baseline calibrations for the quantitative models described above) then

$$\left( \frac{p_t}{p_h} \right) = \left( \frac{z_t}{z_h} \right)^\sigma$$

and thus $\xi^{RA} = \sigma$. The same result obtains in two other cases, even when aggregate shocks are not iid. These cases are $\sigma = 1$ (unitary inter-temporal elasticity of substitution) or $\beta = 1$ (no discounting). The logic for why prices become more sensitive to output as the inter-temporal elasticity of substitution $1/\sigma$ is reduced is familiar and straightforward. For the stock market to clear, stock prices (and expected returns) must adjust to output fluctuations such that (identical) households neither want to buy nor sell stocks. The less willing are households to substitute consumption over time, the more prices must fall (and expected returns increase) in order to induce households to maintain constant stock holdings in response to a decline in output and thus consumption.

In the recent Great Recession in the United States, asset prices fell roughly three times as much as output. The representative agent economy generates $\xi^{RA} = 3$ when $\sigma = 3$. Of course, while this economy serves as a useful benchmark, it has nothing to say about differential welfare effects across age-groups, our main object of interest in this paper.

4.2 Example II: Log Utility and iid Shocks

With logarithmic utility, iid aggregate shocks and an age-income profile that is independent of the aggregate shock we can give a complete characterization of the competitive equilibrium, even for the case in which households choose their portfolios endogenously. The following proposition is

12The detailed analysis is contained in Appendix B.
proved (by construction) in Appendix C and does not hinge on $z$ taking only two values.

**Proposition 2.** Assume that i) the period utility function is logarithmic $(\sigma = 1)$, ii) aggregate productivity shocks have no effect on relative earnings across age groups $(\varepsilon_i(z) = \varepsilon_i \forall z)$ and (iii) productivity shocks are iid over time $(\Gamma_{z,z'} = \Gamma_{z'})$. Then there exists a recursive competitive equilibrium in the two asset economy with endogenous portfolio choice with the following properties:

1. **The distribution of wealth $A$ is constant:** Denote this distribution by $\tilde{A} = (\tilde{A}_1, \ldots, \tilde{A}_I)$

   $$G_{i+1}(z, \tilde{A}, z') = a'_i(z, \tilde{A}, z', \tilde{A}_i) = \tilde{A}_{i+1} \quad \forall z, z', \forall i = 1, \ldots, I - 1$$

   $$G_1(z, \tilde{A}, z') = 0 \quad \forall z$$

2. **Stock and bond prices are proportional to the aggregate productivity shock:**

   $$q(z, \tilde{A}) = z\bar{q} \quad \forall z$$

   $$p(z, \tilde{A}) = z\bar{p} \quad \forall z$$

   where $\bar{q}$ and $\bar{p}$ are constants.

3. **Portfolios are constant both over time and across age over the life-cycle:**

   $$\lambda_i(z, \tilde{A}, \tilde{A}_i) = \bar{\lambda} = \frac{\bar{p}}{\bar{p} + \bar{q}B} \quad \forall z, \forall i = 1, \ldots, I - 1$$

4. **Consumption and savings for all age groups are proportional to the aggregate productivity shock:**

   $$c_i(z, \tilde{A}, \tilde{A}_i) = z\bar{c}_i = z[(1 - \theta)\varepsilon_i + \theta\tilde{A}_i + (\tilde{A}_i - \tilde{A}_{i+1}) (\bar{p} + \bar{q}B)]$$

   $$y_i(z, \tilde{A}, \tilde{A}_i) = z\bar{y}_i = z\tilde{A}_{i+1} (\bar{p} + \bar{q}B) \quad \forall z, \forall i = 1, \ldots, I - 1$$

5. **The value of aggregate wealth relative to output is independent of the supply of debt $B$ and independent of the distribution for productivity shocks:**

   $$\frac{p(z, \tilde{A}) + q(z, \tilde{A})B}{z} = \bar{p} + \bar{q}B$$
6. The equity premium is given by

\[
\sum_z \Gamma_z \left\{ \sum_{z'} \Gamma_{z'} \left[ \frac{p'(z', \bar{A}) \theta z' + q'(z', \bar{A}) B - B}{p(z, \bar{A})} \right] - \frac{1}{q(z, \bar{A})} \right\} = \frac{\bar{p} + \theta + \bar{q} B}{\bar{p}} \left( \sum_z \Gamma_z \sum_z \Gamma_{z' z} - 1 \right)
\]

This proposition has various implications. First, we see that with this particular parameterization with log utility, the model predicts that asset prices fall as much as output in the recession, \( \xi = 1 \). Second, portfolio allocations are counterfactual since the share invested in stocks is age-invariant in the model, but declining with age in the data. Third, since consumption of all age cohorts varies one-for-one with the aggregate shock, all households lose from a recession, including the youngest generations. Fourth, the equity premium is positive (since \( E \left[ \frac{1}{z} \right] \geq \frac{1}{E[z]} = 1 \)), and is increasing in the supply of debt \( B \) (because \( \bar{p} + \bar{q} B \) is independent of \( B \), while \( \bar{p} \) is declining in \( B \)).

Although the log utility specification delivers closed-form solutions, it is of limited interest from the perspective of assessing the welfare effects of the Great Recession, primarily because it cannot generate a large decline in asset prices, relative to the decline of output.\(^{13}\) We therefore now move to exploring deviations from log-utility.

4.3 Example III: Two-Period OLG Economy

Outside the log-\( \text{iid} \) case, closed-form solutions for OLG economies are not available. To build intuition we begin with the simplest OLG framework, in which households live for only two periods: \( T = 2 \). We use this example to discuss how the curvature parameter \( \sigma \) affects the elasticity \( \xi \) of price changes to output changes. We focus on the one-asset economy (\( B = 0 \)) and assume that households only earn labor income in the first period of life: \( \varepsilon_1 = 1 \) and \( \varepsilon_2 = 0 \). Since young households start with zero assets, all wealth is held by old agents. Thus the wealth distribution is time invariant and degenerate in this economy. As in the representative agent model, the only state variable is the exogenous shock \( z \in \{z_l, z_h\} \).

Consumption of young and old households is given by

\[
c_1(z) = (1 - \theta) z - p(z) \\
c_2(z) = \theta z + p(z)
\]

\(^{13}\)However, this parameterization is useful as a test case for assessing the accuracy of our computational algorithm.
and the price of shares are determined by the intertemporal Euler equation

\[ p(z)[(1 - \theta)z - p(z)]^{-\sigma} = \beta \sum_{z' \in \{z_L, z_H\}} \Gamma_{z,z'} [\theta z' + p(z')]^{-\sigma} [\theta z' + p(z')] \] (8)

In general, no closed form solution is available for this functional equation that determines \( p(z) \) if \( \sigma \neq 1 \). However, in Appendix D we derive an approximate expression for the elasticity \( \xi^{2p} \) for this two period (2p) OLG model, again assuming iid shocks:\(^{14}\)

\[
\xi^{2p} \approx \frac{\sigma(1 - \theta)}{1 - \theta \frac{(R - \sigma)}{(R - 1)}} = \xi^{RA} \times \frac{1 - \theta}{1 - \theta \frac{(R - \sigma)}{(R - 1)}}
\]

where \( R = \frac{\theta \beta}{p} > 1 \) is the steady state gross return on the stock.\(^{15}\)

Note that for \( \sigma = 1 \) this formula is exact (as shown in the previous section) and delivers \( \xi^{2p} = \xi^{RA} = 1 \): prices fall by exactly as much as output in a downturn. Second, for \( \sigma > 1 \) we have \( \xi^{2p} > 1 \) and \( \xi^{2p} < \xi^{RA} \). That is, as long as the intertemporal elasticity of substitution \( 1/\sigma \) is smaller than one, asset prices fall by more than output. However, the fall in this life cycle economy is smaller than in the representative agent economy with infinitely-lived households. For example, suppose we think of a period as 30 years, take \( \sigma = 3 \), and set \( \beta \) and \( \theta \) such that the model generates the same interest rate and the same wealth to income ratio as our baseline six period model (see Section 6). These choices imply \( \beta = 0.311 \), and \( \theta = 0.3008 \). Then, using the expression above, \( \xi^{2p} = 1.97 \) in the OLG economy, compared to \( \xi^{RA} = 3 \) in the representative agent economy.\(^{16}\) The finding that stock prices are less volatile, relative to output, in OLG economies compared to the infinitely-lived representative agent economy will reappear consistently in the various economies we study.

The current old generation clearly suffers from the recession since the price of the asset, the only source for old-age consumption, is lower in the bad than in the good aggregate state of the world. Moreover, for \( \sigma > 1 \), consumption of the old is more sensitive to aggregate shocks than

\(^{14}\)This approximation involves taking linear approximations to pricing equations around the point \( z_l/z_h = 1 \).

\(^{15}\)For \( \theta \) such that \( R = \beta^{-1} \) the expression simplifies to \( \xi^{2p} \approx \frac{\sigma(\beta + 1)}{\sigma \beta + 1} \).

\(^{16}\)For the calibration just described, assuming \( z_l/z_h = 0.9 \) and \( pr(z = z_h) = 0.85 \) the true elasticity is \( \xi^{2p} = 1.99 \), compared to the value of 1.97 from the approximate expression.
consumption of the young:

\[
\frac{c_1(z_h)}{c_1(z_l)} < \frac{z_h}{z_l} < \frac{c_2(z_h)}{c_2(z_l)}
\]

The second inequality reflects the fact that \( \frac{c_2(z_h)}{c_2(z_l)} = \frac{p_h}{p_l} > \frac{z_h}{z_l} \) (since \( \xi^{2p} > 1 \)), while the first inequality follows from market clearing: \( \frac{c_1(z_h) + c_2(z_h)}{c_1(z_l) + c_2(z_l)} = \frac{z_h}{z_l} \). The fact that aggregate risk is disproportionately borne by the old explains why stock prices are less volatile in this economy than in the analogous representative agent economy. Recall that stocks are effectively priced by younger agents, because the supply of stocks by the old is inelastic at any positive price. Because the old bear a disproportionate share of aggregate risk, the young are relatively insulated, their consumption fluctuates less than output, and thus smaller price changes (relative to the representative agent economy) are required to induce them to purchase the aggregate supply of equity at each date.

One might wonder whether it is possible that \( \frac{c_1(z_h)}{c_1(z_l)} < 1 \), so that newborn households would prefer to enter the economy during a recession rather than during a boom. The answer turns out to be no: while stock prices fall by more than output in the event of a recession, they never fall by enough to compensate the young for the decline in labor earnings they experience. The logic for this result is straightforward. In a two-period OLG economy, stock prices are defined by the inter-temporal first-order condition for young households (equation 8). With \( iid \) shocks, the right hand side of this condition is independent of the current value for \( z \). Taking the ratio of the two pricing equations across states, the ratio of stock prices across states is given by:

\[
\frac{p_h}{p_l} = \left( \frac{c_1(z_h)}{c_1(z_l)} \right)^\sigma
\]

Now the only advantage to the young from entering the economy during a recession is that they buy stocks cheaply, \( \frac{p_h}{p_l} > 1 \). But then the optimality restriction above implies that \( \frac{c_1(z_h)}{c_1(z_l)} > 1 \), so the young must suffer relatively low consumption if they enter during a recession. Intuitively, the force that pushes stock prices down in a recession is that low prices are needed to induce the young to buy stocks when the marginal utility of current consumption is high. But a high marginal utility of consumption requires low consumption.

This example reveals that for the young to potentially gain from a recession, we need people to live for at least three periods, while the previous example with logarithmic preferences indicates that we also require \( \sigma > 1 \). We now move to a three period example which we will use to show
that the young can indeed benefit from a recession, and to provide some intuition on the model elements that deliver this result.

4.4 Example IV: Three-Period OLG Economy

Now households live for three periods, \( I = 3 \). Households do not value consumption when young, and discount the future at a constant factor \( \beta_2 = \beta_3 = \beta \). They are only productive in the first period of their lives, i.e. \( \varepsilon_1 = 1 \) and \( \varepsilon_2 = \varepsilon_3 = 0 \).

By construction, young households buy as many stocks as they can afford, while the old sell all the stocks they own. Only the middle-aged make an interesting stock purchase decision, trading off current versus future consumption. In a recession, falling stock prices will have countervailing effects on the middle-aged’s stock trade decision. On the one hand, low current stock prices offer an incentive to reduce stock sales to exploit higher expected stock returns (the substitution effect). On the other, consumption smoothing calls for larger stock sales, since stock sales are the only source of income for this group (the income effect).

Given that young households start their lives with zero asset holdings and that the total number of wealth shares has to sum to one, the only endogenous aggregate state variable in this simple economy is the share of asset held by old households \( A^3 \) which we for simplicity denote by \( A^3 = S \). Consequently the share of assets owned by middle-age households is given by \( A^2 = 1 - S \).

The first order condition for middle-aged households can then be written as

\[
p(z, S) u'(1 - S)(p(z, S) + \theta z) - G(z, S) p(z, S) = \beta \sum_{z'} \Gamma_{z,z'} [p(z', G(z, S)) + \theta z'] u' [G(z, S) (p(z', S'))]
\]

where consistency requires that tomorrow’s asset share of the old is equal to the number of shares purchased by the current middle-aged households: \( S' = G(z, S) \). In this expression marginal utility from consumption when middle aged, \( c_2 = (1 - S)(p(z, S) + \theta z) - G(z, S)p(z, S) \) is equated to expected discounted marginal utility from old age consumption \( c_3 = G(z, S)(p(z', S') + \theta z') \), adjusted by the gross return on assets \( [p(z', S') + \theta z']/p(z, S) \). Given a pricing function \( p(z, S) \), equation (9) defines the optimal policy function \( G(z, S) \).

The second functional equation determining the pricing and optimal policy functions states that the equilibrium demand for shares of the young, \( 1 - G(z, S) \) equals the number of shares that can
be purchased with total labor income of the young, which is \( w(z)/p(z) = (1 - \theta)z/p(z) \). Thus

\[ [1 - G(z, S)]p(z, S) = (1 - \theta)z \]  

(11)

Equations (9) and (11) form a pair of functional equations that jointly determine the unknown pricing and policy functions \( p(z, S) \) and \( G(z, S) \). Consumption \( \{c_2(z, S), c_3(z, S)\} \) and welfare \( \{v_1(z, S), v_2(z, S), v_3(z, S)\} \) at all ages can easily be calculated from these equilibrium functions.\(^{17}\)

In the log-case with iid shocks, as shown in Section 4.2, consumption of all households is proportional to the aggregate shock. It then follows directly that in this case middle-aged and old households suffer welfare losses from the economic downturn, while newborn households (who do not value current consumption) are exactly indifferent between being born in normal times and in a recession. The previous example suggests that if \( \sigma > 1 \), asset prices should move by more than output, which should be sufficient to break the indifference of the young in favor of being born in the downturn. We briefly investigate this conjecture now.

Note that for \( \sigma \neq 1 \) the recursive competitive equilibrium of the model needs to be solved numerically, but this is straightforward to do with only one continuous state variable \( S \). We choose the same parameter values as in the previous two period example. The capital share remains at \( \theta = 0.3008 \) and the time discount factor equals \( \beta = (0.311)^{10/3} = 0.459 \), resulting in the same annualized discount factor as in the two period model.\(^{18}\) The aggregate shock takes two values with \( z_l/z_h = 0.917 \) Thus a fall in aggregate technology leads to a decline of aggregate output in the order of 8.3\%, a value we will also use below in the calibrated version of the full model. We assume that aggregate shocks are uncorrelated over time in this model in which a period lasts for 20 years.

\(^{17}\)These are given explicitly as

\[
\begin{align*}
  c_o(z, S) & = S(p(z, S) + \theta z) \\
  c_m(z, S) & = (1 - S)(p(z, S) + \theta z) - G(z, S)p(z, S) \\
  v_o(z, S) & = u(c_o(z, S)) \\
  v_m(z, S) & = u(c_m(z, S)) + \beta \sum_{z'} \Gamma_{z,z'} u[c_o(z', G(z, S))] \\
  v_y(z, S) & = \beta \sum_{z'} \Gamma_{z,z'} v_m(z', G(z, S))
\end{align*}
\]

\(^{18}\)We are assuming 30 year periods in the two period OLG model and 20 year periods in the 3 period model. Note also that it is impossible to match the empirical wealth-to-earnings ratio by appropriate choice of \( \beta \) in this simple model since households only earn labor income in the first period of their life and save all of it.

21
Figure 3 plots the elasticity of asset prices to output, $\xi^3 p$, as a function of the share of wealth held by the old generation, for various values of the IES $1/\sigma$. Note that, as demonstrated above, for the logarithmic case $\sigma = 1$ we have $\xi^3 p = 1$, independent of the wealth distribution $S$.

This figure displays two key findings. First, the lower is the willingness of households to intertemporally substitute consumption (the higher is $\sigma$), the larger is the fall in asset prices, relative to output, in a recession. Second, the size of asset price movements depends on the wealth distribution $S$ when preferences are not logarithmic. The larger is the share of wealth held by the middle aged (the smaller is $S$), the larger is $\xi^3 p$ (assuming $\sigma > 1$). This is because, among the agents selling assets, the old always sell all their stocks, irrespective of $z$, while the middle-aged will sell more stocks in a recession than in a boom, as long as the inter-temporal elasticity of substitution is less than one. Thus the larger the share of wealth in the hands of middle aged relative to the old, the larger is the downward pressure on prices in response to a negative shock, since the young must buy more stocks with the same amount of earnings.\(^{19}\)

For $\sigma = 3$, the wealth share of the old generation converges to $S = 34.2\%$ if the economy experiences a long sequence of good shocks, and for $S = 0.342$ we find a price elasticity of

\(^{19}\)In the economies for which $\sigma \neq 1$ the wealth holdings of the old at the start of a recession need not be the same as at the start of an expansion, on average. The figure traces out the price differences between expansions and recessions, conditional on the same wealth distribution in the economy.
$\xi^{3p} = 1.24$. Recall that the corresponding values for the representative-agent and two-period OLG economies were $\xi^{RA} = 3$ and $\xi^{2p} = 1.97$.

The welfare consequences for young generations of starting their economic lives in a recession, relative to an expansion, are displayed in Figure 4. We measure welfare consequences as the percentage increase in consumption in all periods of a household’s life, under all state contingencies, that a household born in an expansion would require to be as well off as being born in a recession, with positive numbers thus reflecting welfare gains from a recession. Again we plot these numbers as a function of the wealth distribution $S$, and for different $\sigma$. We observe that the welfare consequences from recessions for the young closely mirror the elasticity of asset prices to output (Figure 3), confirming that this elasticity is a crucial determinant of how the welfare costs of recessions are distributed in our class of OLG economies.

The purpose of the sequence of simple examples was to develop intuition for the magnitude of asset price declines relative to output, and the resulting implications for lifetime welfare of different generations. Our last example in this section displayed welfare gains from a recession for the young as long as $\sigma > 1$. However, note that in this example we stacked the deck in several ways in favor of obtaining this result. First, young households do not value consumption and thus are not affected.
directly by a decline in current aggregate consumption. Second, the middle-aged and the old have no source of income other than selling shares, which means that they bear a disproportionate share of the burden of recession. Third, aggregate shocks are purely temporary, so young households can expect asset prices to recover before they need to sell stocks later in their life cycle.

The remainder of the paper now documents the size of the asset price decline and the distribution of welfare consequences from a severe and long-lasting recession in a realistically calibrated OLG economy in which life cycle labor income and wealth profiles match those observed in the 2007 SCF.

5 Calibration

To describe the calibration process, we start with the two-asset economy with exogenous portfolios. The one asset economy is a special case in which portfolio shares do not vary by age. We then retain the calibrated parameters for the economy in which households choose portfolios freely. We assume agents enter the economy as adults, and live for \( I = 6 \) periods, where a period is 10 years. The preference parameters to calibrate are the coefficient of relative risk aversion \( \sigma \), and the life-cycle profile for discount factors \( \{ \beta_i \}_{i=2} \). The technology parameters are capital’s share \( \theta \), the life-cycle profile for earnings \( \{ \varepsilon_i(z) \}_{i=2} \), the supply of bonds \( B \), the life-cycle profile for portfolio shares allocated to stocks, \( \{ \lambda_i \}_{i=1} \), and the support and transition probability matrix \( \Gamma \) for the aggregate productivity shock.

We first calibrate the preference and life cycle parameters using a non-stochastic version of the economy, in which the productivity shock is set to its average value \( \bar{z} = 1 \). Finally we calibrate the stochastic process for productivity \( z \).

Let \( r_e \) denote the net return on equity in the non-stochastic economy, and let \( r_b \) be the net return on bonds. Our calibration strategy can be summarized as follows:

1. Fix risk aversion, \( \sigma \), to a benchmark value of 3.

2. Set the life-cycle profile \( \{ \varepsilon_i(\bar{z}) \}_{i=2} \) equal to the empirical 2007 SCF life-cycle profile for labor income, and the portfolio shares \( \{ \lambda_i \}_{i=1} \) equal to age-group specific shares of risky assets in

---

20In Appendix E we relate asset prices in the one asset economy to asset prices in the two asset economy with exogenous portfolios, and show that in the latter one can generate equity premia of arbitrary size by appropriate choice of portfolio shares \( \{ \lambda_i \} \) and/or outstanding bonds \( B \).
net worth.

3. Set capital's share $\theta$ and the supply of bonds $B$ so that the model generates realistic returns to risky and safe assets, $r_e$ and $r_f$.

4. Set the life cycle profile $\{\beta_i\}_{i=2}^I$ so that the model generates the 2007 SCF life-cycle profile for net worth documented in Section 2, given the other determinants of life-cycle saving: risk aversion $\sigma$, the profile for earnings $\{\varepsilon_i\}_{i=1}^I$, the exogenous portfolio shares $\{\lambda_i\}_{i=1}^I$, and the returns to risky and safe assets, $r_e$ and $r_b$.

We now describe this calibration procedure in more detail. It delivers a realistic (as measured by the SCF 2007) joint life-cycle distribution for earnings, net worth, portfolio composition, and consumption. These are necessary ingredients for our calibrated OLG model to serve as a suitable laboratory for exploring the distributional impact of aggregate shocks.

**Returns** Following Piazzesi, Schneider, and Tuzel (2007) we target annual returns on safe and risky assets of 0.75% and 4.75% per annum, where the latter is the return on an equally-weighted portfolio of stocks returning 6.94% and housing returning 2.52%. Given that our period length is 10 years, this implies

$$1 + r_b = \frac{1}{q} = 1.0075^{10}$$  \hspace{1cm} (17)

and

$$1 + r_e = \frac{\theta - (1 - q)B + p}{p} = 1.0475^{10}$$  \hspace{1cm} (18)

We now describe in more detail how we calibrate the life-cycle profiles, before moving to discuss how to compute the pair $(\theta, B)$ that delivers the target returns $r_e$ and $r_b$.

**Life cycle profiles** We generate empirical life-cycle profiles by computing age-group-specific means in the SCF for holdings of safe assets, net worth, and non-asset income. The youngest age group corresponds to households aged 20 – 29, and the sixth and oldest age group corresponds to households aged 70 and above.
Budget constraints of households in the model can be written as

\[ c_i = (1 - \theta)\varepsilon_i + R_i y_i - y_{i+1} \quad \text{for } i = 1, \ldots, N - 1 \]

\[ c_N = (1 - \theta)\varepsilon_N + R_N y_N, \]

where \( y_{i+1} \) is savings for age group \( i \) (net worth for age group \( i + 1 \)) and where the gross return on savings between age \( i \) and \( i + 1 \) is given by

\[ R_i = \lambda_i (1 + r_e) + (1 - \lambda_i) r_b. \]

We measure \( \{\varepsilon_i\}_2^T \) as ten times average annual labor income (defined as in Section 2) of age group \( i \), \( \{y_i\}_2^T \) as the average net worth of age group \( i \), and \( \{\lambda_i\}_1^T \) as the fraction of risky assets in aggregate net worth for age group \( i \). Note that returns vary by age because \( \lambda_i \) is age-varying and \( r_e > r_b \). Because agents in our model enter the economy with zero initial wealth, we re-categorize asset income for the youngest group in the SCF as labor income: thus we set \( y_1 = 0 \), and \( \varepsilon_1 \) equal to ten times average annual labor income for the youngest group plus \( R_1 y_1 \).

Given the sequences \( \{\varepsilon_i\}, \{y_i\} \) and \( \{\lambda_i\} \), the budget constraints imply a life-cycle consumption profile, \( \{c_i\} \). This consumption profile can be used to back out the sequence of time discount factors that supports the age-varying profile for returns. In particular, in a non-stochastic version of the model, the household's inter-temporal first order condition implies

\[ \beta_{i+1} = \left( \frac{c_{i+1}}{c_i} \right)^\sigma \frac{1}{R_{i+1}}. \]

Note that the consumption profile is derived directly from household budget constraints, and is pinned down by data on labor income, net worth, and returns. Thus, the consumption profile is independent of preference parameters, and in particular of the choice for risk aversion, \( \sigma \). However, supporting this consumption profile as an equilibrium outcome requires a discount factor profile \( \{\beta_i\}_1^T \) that does depend on \( \sigma \). For example, suppose \( \lambda_i = \lambda \) and thus \( R_i = R \) for all \( i \). Then, the larger is \( \sigma \), the more sensitive is the implied profile for \( \beta_i \) to age variation in consumption.

Figure 5 below shows life cycle profiles for consumption, net worth and labor income from the nonstochastic version of our model, and Figure 6 displays the implied calibrated profile \( \{\beta_i\}_2^T \). Note that \( \beta_i \) is generally larger than one. This reflects the fact that the data indicate strong growth.
Figure 5: Life Cycle Profiles for Consumption, Net Worth and Labor Income
in income and consumption over the life-cycle between the 20-29 age group, and the 50-59 age group. However, $\beta_i$ should not be interpreted solely as capturing pure time preference: it also incorporates the effects of age variation in family size and composition on the marginal utility from consumption.

Figure 6: **Implied Discount Factors for various Elasticities of Substitution**

**Technology** Because the model is calibrated to replicate observed life-cycle profiles for earnings, net worth and portfolio composition, it will also replicate the ratio of aggregate safe assets to
aggregate net worth, and the ratio of aggregate net worth to aggregate (10 year) labor income.\textsuperscript{21} Suppressing state-dependent notation these ratios in the SCF are, respectively,
\[
\frac{qB}{p + qB} = 0.082 \quad \text{and} \quad \frac{p + qB}{1 - \theta} = \frac{1}{10} \times 7.84.
\]

The expressions for returns in equations (17-18) define \( q \) and \( p \) as functions of \( \theta \) and \( B \). Substituting in these functions, the two ratios above can be used to solve for \( \theta \) and \( B \). The solutions are \( \theta = 0.3008 \) and \( B = 0.048 \).

**Aggregate risk** We assume that the aggregate shock \( z \) takes one of two values, \( z \in Z = \{z_l, z_h\} \). We set the ratio \( \frac{z_l}{z_h} = 0.917 \) so that in a recession output falls by 8.3\%. This corresponds to the size of the gap that opened up between actual real GDP per capita and trend real GDP per capita between the NBER recession start and end dates (which we take to be 2007:4 and 2009:2 respectively).\textsuperscript{22} We assume that \( z \) is \( iid \) over time, where the probability that \( z = z_h \) is equal to 0.85. Given that a period is 10 years, this implies that the expected duration of periods of high productivity is \( 10/0.15 = 66.7 \) years, while the expected duration of periods of low productivity is \( 10/0.85 = 11.8 \) years. Thus in our calibration, a recession involves a very large and quite long lasting decline in output, but is a fairly rare event. Finally, we normalize so that average output is equal to one.

We think of the age profile for labor income calibrated to 2007 SCF data as corresponding to the age profile for earnings in normal times: \( \varepsilon_i(z_l) = \varepsilon_i(z_h) \). We will consider two alternative models for how this age profile changes in a recession. In Section 6 we start by assuming \( \varepsilon_i(z_l) = \varepsilon_i(z_h) = \varepsilon_i(z) \). In this case, recessions reduce labor income of all groups proportionately. In Section 7 we then consider an alternative calibration in which recessions also change the slope of the age profile, reducing labor income relatively more for the young, and relatively less for the old.

\textsuperscript{21}In our model, each age group is assumed to be of equal size. Thus, given that we replicate SCF portfolios for each age group, the appropriate aggregate targets are simple unweighted averages across age groups. Because these age groups are not of identical size in the SCF, these aggregate targets do not correspond exactly to SCF population averages, but the differences turn out to be small.

\textsuperscript{22}We define trend growth to be the average growth rate in GDP per capita between 1947:1 and 2007:4, which was 2.1\% per year.
6 Results (with Acyclical Age-Earnings Profile)

We now document the asset price and welfare implications of a large recession. The nature of the experiment is as follows. We simulate each alternative model economy assuming the sequence for aggregate productivity involves a long period of normal times, a recession in period zero, and a return to normal times in subsequent periods. Recall that the shock involves a 8.3% decline in productivity, and that agents assign a 15% probability to a recession occurring in any period. Our baseline value for the inter-temporal elasticity of substitution is one third: $\sigma = 3$.

We begin by describing the results for the one-asset economy in which only stocks are traded, and then move to the two other economies, the two-asset economy with exogenous portfolios, and the model in which portfolios are endogenous.

One asset economy  Figure 7 displays the implied paths for asset prices. In the one asset economy, the stock price falls by 16% in the period of a recession. The finding that stock prices decline more than output is consistent with the intuition developed in Section 4 that for an elasticity of substitution smaller than one, asset prices are more volatile than the underlying shocks. The elasticity of prices to output is 2.06 (see Table 5).\footnote{Recall that the corresponding value for the two-period OLG economy described in Section 4 was very similar, at 1.99.} Quantitatively, the decline in the model stock price is smaller than the corresponding change from asset price peak to trough observed in quarterly US data, which was approximately three times as large as the output decline over the same period. However, recall that the period length in our model is 10 years. In this light, we note that asset prices in the United States have partially recovered since their trough and thus we view a model price decline somewhere between 15% and 30% as a reasonable approximation to the medium run decline in net worth associated with the Great Recession.

In the recovery period after the shock, the stock price over-shoots, rising above its long run value. This reflects endogenous wealth dynamics in the model. When the shock hits, older households, and especially those in the 60–69 year-old age group, sell additional equity to fund consumption. Thus, in the period after the recession, a larger share of aggregate wealth is held by younger cohorts, who are net savers, while less is held by older cohorts, who are net borrowers. This translates into higher net demand for equity, and thus a high stock price.

Table 5 shows that the size of the asset price decline is declining in the inter-temporal elasticity of substitution. With log consumption, prices move one-for-one with output, as in the simpler
Figure 7: Equilibrium Asset Prices for all Calibrated Economies

Aggregate Wealth Dynamics

![Chart showing Aggregate Wealth Dynamics with time since recession on the x-axis and ratio on the y-axis. The chart includes lines for Single Asset, Fixed Portfolios, and Endogenous Portfolios.]
economies described in Section 4. As in the two-period economy described in Section 4, the price elasticity is a concave function of the coefficient of relative risk aversion: the magnitude of the additional price response as \( \sigma \) is increased from 3 to 5 is much smaller than that when \( \sigma \) goes from 1 to 3. Recall that in an analogous representative agent economy with \( iid \) shocks, the elasticity is linear in (and in fact equal to) \( \sigma \).

| Table 5: Relative Price Decline \( \xi = \left( \frac{\% \Delta (p_0 / p_{-1})}{\% \Delta (z_0 / z_{-1})} \right) \) For Each Economy |
|--------------------------------------|-----------------|-----------------|-----------------|
| Economy                             | \( \sigma = 1 \) | \( \sigma = 3 \) | \( \sigma = 5 \) |
| Single Asset                        | 1.00            | 2.06            | 2.65            |
| Fixed Portfolios                    |                 |                 |                 |
| - Stock                             | 1.04            | 2.19            | 2.86            |
| - Bond                              | 1.01            | 2.55            | 3.49            |
| - Wealth                            | 1.04            | 2.22            | 2.91            |
| Endogenous Portfolios               |                 |                 |                 |
| - Stock                             | 1.00            | 2.89            | 4.90            |
| - Bond                              | 1.00            | 2.94            | 4.95            |
| - Wealth                            | 1.00            | 2.90            | 4.90            |

Table 6 displays the welfare consequences of a one-period model recession by age group, with \( i = 1 \) denoting households that become economically active in the recession period.

In the one-asset economy, the welfare consequences of a recession are monotone in age, with older generations suffering more. For \( \sigma = 3 \), the loss for the oldest households is equivalent to a 12.7% decline in consumption. In the model this age group finances roughly half of consumption from income (evenly split between dividends and non-asset income) and finances the other half by selling assets. In a recession, income (output) declines by 8.3% and asset prices decline by 17%, translating into a 12.7% decline in consumption for this age group.

The welfare loss is much smaller for younger age groups for two reasons. First, welfare losses are expressed in units of lifetime consumption, so relatively small losses for younger households partly reflect the fact that one period of recession accounts for a small fraction of remaining lifetime for the young. Second, the old finance part of consumption by selling stocks, and their welfare losses are amplified by the fact that stock prices decline by more than output. The flip side of large

\[ ^{24} \text{Welfare gains are measured as the percentage increase in consumption (in all periods of life) under a no-recession scenario needed to make households indifferent between the current aggregate state being } z_t \text{ rather than } z_h. \text{ Under both the recession and no recession scenarios, output realizations after the initial period are drawn from the same iid distribution.} \]
Table 6: **Expected Welfare Gains from One-Period Recession**

<table>
<thead>
<tr>
<th>Age $i$</th>
<th>$\sigma = 1$</th>
<th>$\sigma = 3$</th>
<th>$\sigma = 5$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Single Asset Economy</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>$-1.43%$</td>
<td>$-0.78%$</td>
<td>$-0.38%$</td>
</tr>
<tr>
<td>2</td>
<td>$-1.72%$</td>
<td>$-1.19%$</td>
<td>$-0.82%$</td>
</tr>
<tr>
<td>3</td>
<td>$-2.14%$</td>
<td>$-1.29%$</td>
<td>$-0.67%$</td>
</tr>
<tr>
<td>4</td>
<td>$-2.85%$</td>
<td>$-2.75%$</td>
<td>$-2.17%$</td>
</tr>
<tr>
<td>5</td>
<td>$-4.24%$</td>
<td>$-6.26%$</td>
<td>$-6.57%$</td>
</tr>
<tr>
<td>6</td>
<td>$-8.30%$</td>
<td>$-12.66%$</td>
<td>$-15.16%$</td>
</tr>
<tr>
<td><strong>Fixed Portfolio Economy</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>$-1.39%$</td>
<td>$-0.66%$</td>
<td>$-0.03%$</td>
</tr>
<tr>
<td>2</td>
<td>$-2.03%$</td>
<td>$-2.14%$</td>
<td>$-1.93%$</td>
</tr>
<tr>
<td>3</td>
<td>$-2.29%$</td>
<td>$-1.63%$</td>
<td>$-1.03%$</td>
</tr>
<tr>
<td>4</td>
<td>$-2.85%$</td>
<td>$-2.72%$</td>
<td>$-2.12%$</td>
</tr>
<tr>
<td>5</td>
<td>$-4.08%$</td>
<td>$-5.92%$</td>
<td>$-6.25%$</td>
</tr>
<tr>
<td>6</td>
<td>$-7.81%$</td>
<td>$-12.20%$</td>
<td>$-14.83%$</td>
</tr>
<tr>
<td><strong>Endogenous Portfolio Economy</strong></td>
<td>$0.33%$</td>
<td>$0.33%$</td>
<td>$2.98%$</td>
</tr>
<tr>
<td>2</td>
<td>$-1.72%$</td>
<td>$-2.69%$</td>
<td>$-3.08%$</td>
</tr>
<tr>
<td>3</td>
<td>$-2.14%$</td>
<td>$-1.97%$</td>
<td>$-0.91%$</td>
</tr>
<tr>
<td>4</td>
<td>$-2.85%$</td>
<td>$-3.75%$</td>
<td>$-3.66%$</td>
</tr>
<tr>
<td>5</td>
<td>$-4.24%$</td>
<td>$-6.15%$</td>
<td>$-7.34%$</td>
</tr>
<tr>
<td>6</td>
<td>$-8.30%$</td>
<td>$-9.20%$</td>
<td>$-11.42%$</td>
</tr>
</tbody>
</table>
capital losses for older households is that young households get to buy stocks at fire-sale prices. As the economy recovers in subsequent periods, stock prices bounce back, and younger generations enjoy substantial capital gains. The lower is the intertemporal elasticity of substitution (and thus the larger is the recession-induced price decline) the more unevenly are welfare costs distributed across generations, with larger losses for the old, and smaller losses for younger households.

To isolate the role of asset price movements in allocating welfare costs across age groups from the effect of differential remaining lifetime we consider a simulation in which a recession lasts for six periods. Because all generations spend the rest of their lives in the low output state in this experiment, all age variation in welfare effects in this experiment is driven by asset price movements. Table 7 reports the change in realized welfare (in the usual consumption equivalent metric) from experiencing six consecutive periods of depressed output instead of six consecutive periods of normal output. A comparison of Tables 7 and 6 illustrates that the remaining lifetime effect is quantitatively important. For example, in the logarithmic utility case ($\sigma = 1$) welfare losses from a one period recession (Table 6) are much smaller for the young than for the old, whereas in the corresponding six period recession simulation the welfare cost is the same for all age groups. This finding simply reflects the finding in Proposition 1 that with logarithmic utility, consumption for each age group is proportional to the aggregate shock. For $\sigma > 1$, Table 7 indicates that the welfare costs of recessions are disproportionately born by the old, even when the recession outlives all age-groups. Moreover the age variation in welfare losses is large: from $-5.7\%$ of consumption for the youngest age group up to $-12.7\%$ for the oldest cohort, indicating that asset price movements are quantitatively important for distributing welfare losses.

**Exogenous portfolios economy** We now turn to our model with two assets, in which we impose the substantial heterogeneity in portfolio composition across age groups observed in the Survey of Consumer Finances (see Section 2). Recall that in this version of the model, older households hold a significant share of wealth in safe assets, while younger households are leveraged, and thus more exposed to asset price declines. Again, Figure 7 shows the time path for aggregate net worth for this economy, while Table 5 breaks down price declines for stocks and bonds in the period of the recession. Note that each bond pays off one unit of consumption in the period of the recession, as in every other period: this is the definition of a safe asset. However, the equilibrium price of new bonds (and stocks) must both adjust so that markets clear, given agents’ (optimal) saving choices, and the (suboptimal) portfolio shares they are forced to adopt.

The two-asset model generates a slightly larger decline in asset values in a recession than the
<table>
<thead>
<tr>
<th>Age $i$</th>
<th>$\sigma = 1$</th>
<th>$\sigma = 3$</th>
<th>$\sigma = 5$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Single Asset Economy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>$-8.30%$</td>
<td>$-5.48%$</td>
<td>$-4.00%$</td>
</tr>
<tr>
<td>2</td>
<td>$-8.30%$</td>
<td>$-5.99%$</td>
<td>$-4.29%$</td>
</tr>
<tr>
<td>3</td>
<td>$-8.30%$</td>
<td>$-6.90%$</td>
<td>$-4.90%$</td>
</tr>
<tr>
<td>4</td>
<td>$-8.30%$</td>
<td>$-9.27%$</td>
<td>$-9.22%$</td>
</tr>
<tr>
<td>5</td>
<td>$-8.30%$</td>
<td>$-11.81%$</td>
<td>$-14.42%$</td>
</tr>
<tr>
<td>6</td>
<td>$-8.30%$</td>
<td>$-12.66%$</td>
<td>$-15.16%$</td>
</tr>
<tr>
<td></td>
<td>Fixed Portfolio Economy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>$-8.51%$</td>
<td>$-5.82%$</td>
<td>$-4.00%$</td>
</tr>
<tr>
<td>2</td>
<td>$-8.63%$</td>
<td>$-7.11%$</td>
<td>$-5.68%$</td>
</tr>
<tr>
<td>3</td>
<td>$-8.24%$</td>
<td>$-7.24%$</td>
<td>$-5.55%$</td>
</tr>
<tr>
<td>4</td>
<td>$-8.00%$</td>
<td>$-8.97%$</td>
<td>$-9.17%$</td>
</tr>
<tr>
<td>5</td>
<td>$-7.85%$</td>
<td>$-11.21%$</td>
<td>$-13.88%$</td>
</tr>
<tr>
<td>6</td>
<td>$-7.81%$</td>
<td>$-12.20%$</td>
<td>$-14.83%$</td>
</tr>
<tr>
<td></td>
<td>Endogenous Portfolio Economy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>$-8.30%$</td>
<td>$-4.51%$</td>
<td>$3.93%$</td>
</tr>
<tr>
<td>2</td>
<td>$-8.30%$</td>
<td>$-8.60%$</td>
<td>$-7.69%$</td>
</tr>
<tr>
<td>3</td>
<td>$-8.30%$</td>
<td>$-7.70%$</td>
<td>$-4.94%$</td>
</tr>
<tr>
<td>4</td>
<td>$-8.30%$</td>
<td>$-9.00%$</td>
<td>$-9.51%$</td>
</tr>
<tr>
<td>5</td>
<td>$-8.30%$</td>
<td>$-9.43%$</td>
<td>$-11.35%$</td>
</tr>
<tr>
<td>6</td>
<td>$-8.30%$</td>
<td>$-9.20%$</td>
<td>$-11.42%$</td>
</tr>
</tbody>
</table>
stock-only model described above. To understand why, recall that because younger households are leveraged in this economy, they suffer a larger decline in wealth relative to the one asset economy. Thus in the period of the recession, younger households require an even larger decline in asset prices (relative to the one asset model) in order to be willing to absorb the extra assets older households are selling.

Table 6 indicates larger welfare losses for households aged 30–49 in the two asset economy, relative to the one asset model, while households aged 60 and older fare better in the two asset model. These differences are readily interpreted: because 30–49 year-old households are now leveraged they take a bigger hit in the period of the crisis, while households aged 60 and older have more safe assets, and suffer less.

**Endogenous portfolios economy**  We now move to our final economy, the economy in which households choose portfolios freely at each age. Recall that there are only two values for the aggregate shock, and thus trade in two assets sequentially completes markets (households currently alive still cannot trade with the unborn households). Because a constant amount of asset income flows to bond holders in a risk-free fashion, dividend income and stock returns are more volatile than in the corresponding one-asset economy.

In Figure 8 we plot how equilibrium portfolios in this model vary with age.\(^{25}\) We do this for three values for risk aversion, \(\sigma = 1, 3\) and 5.

In the log case (\(\sigma = 1\)) portfolios are age-invariant (see Proposition 1). For \(\sigma > 1\), aggregate asset values become more volatile than output, for the standard reason: when agents are less willing to substitute inter-temporally, prices must adjust more to induce agents to tolerate fluctuations in consumption. Because asset prices fluctuate by more than output, younger households who have little wealth relative to earnings – require a more leveraged portfolio (a higher equity to debt ratio) to face the same exposure to aggregate risk as older (and wealthier) households. Thus, the equilibrium share of equity in household portfolios is decreasing with age, consistent with the downward-sloping profile for the share of risky assets in net worth observed in the SCF. While this qualitative pattern is an important success for the model, for \(\sigma = 3\) or 5 age variation in portfolio composition is larger in the model than in the data. Thus, for these values for \(\sigma\), observed US portfolios are not extreme enough to share risk efficiently across generations: older Americans are over-exposed to aggregate risk in the data, relative to what is optimal in the model.

\(^{25}\)These are the portfolio shares after a long sequence of good shocks \(z = z_h\).
Figure 8: Portfolio Choices of Households in Data and Models

Risky Share of Portfolio

- Data
- Sigma=1
- Sigma=3
- Sigma=5

Generation
Figure 7 indicates that prices decline by more in the endogenous portfolios model than in the other two model economies. This reflects the fact that with endogenous portfolios younger households are heavily leveraged. Thus, compared to the other economies, younger households take a bigger hit in the period of the shock. This translates into a larger decline in equilibrium consumption for younger households, and necessitates a larger fall in asset prices to preserve asset market clearing. Table 5 indicates that price changes in the complete markets economy are extremely similar to those that would emerge in a representative agent economy, with a price to output decline elasticity roughly equal to $\sigma$ (see Section 4.1).

Turning to welfare (Table 6) when portfolios are endogenous the oldest households suffer less (relative to the other economies) in a recession, reflecting the fact that they hold more safe assets. Conversely, younger households generally fare worse, reflecting greater leverage. The differences in welfare losses by age between the models with exogenous and endogenous portfolios offer one metric for how far observed US portfolios are from those that result from efficient inter-generational risk-sharing through the trade of financial assets.

Note that there is no way for agents alive in the period before the recession to share risk with the new cohort that enters only in the recession period. Since prices fall by so much in the endogenous portfolios economy, the youngest households are actually better off entering the economy during a recession compared to normal times: for $\sigma = 3$ their welfare gain is equivalent to one third of one percent increase in life-time consumption. Thus the endogenous portfolios economy delivers an interesting twist: the fact that existing generations diversify aggregate risk efficiently magnifies asset price declines. These larger asset price declines in turn work to decrease effective risk sharing between generations alive in the previous period and new labor market entrants.

7 Results (with Cyclical Age-Earnings Profile)

So far we have assumed that in the recession labor incomes of all age groups decline proportionally to the fall in output and the aggregate wage. However, in recessions young households are especially vulnerable to unemployment, while non-cyclical social security benefits are an important part of the non-asset income of older age groups. To the extent that recessions have a disproportionate direct negative impact on younger households for these reasons, this will work to offset the benefits the young enjoy from being less exposed to declining asset values. To quantify the importance of this offsetting effect we conduct an experiment in which recessions have asymmetric effects on the non-asset income of different age groups.
Because we have no recession data on income from the SCF we turn to the March Current Population Survey (CPS) to estimate how the Great Recession affected income by age group. Our CPS measure of non-asset income is conceptually close to the SCF measure of labor income we used to calibrate the life cycle profile for model earnings. This measure includes all CPS income components except for dividends, interest, rents, and one third of self-employment income. For the year 2007, the SCF and CPS life cycle profiles for labor income align quite closely.\(^{26}\)

In calibrating the alternative experiment in this section we assume that the life-cycle profile for labor productivity when aggregate productivity is high \(\{\epsilon_i(z_H)\}_{i=1}^I\) corresponds exactly to the SCF-based profile used in the baseline version of the model. We then measure the percentage decline in labor income by age group in the CPS between 2007 and 2009 (survey years 2008 and 2010).\(^{27}\) We impose a life-cycle profile for the recession state \(\{\epsilon_i(z_L)\}_{i=1}^I\) such that when the model economy transits into a recession, it replicates the CPS differentials across age groups in percentage labor income declines. The declines in earnings by age group fed into the model are then as follows:

<table>
<thead>
<tr>
<th>Table 8: Recession Decline in Model Earnings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Per capita earnings</td>
</tr>
<tr>
<td>Age of Head</td>
</tr>
<tr>
<td>20-29</td>
</tr>
<tr>
<td>30-39</td>
</tr>
<tr>
<td>40-49</td>
</tr>
<tr>
<td>50-59</td>
</tr>
<tr>
<td>60-69</td>
</tr>
<tr>
<td>70+</td>
</tr>
</tbody>
</table>

We observe that indeed the age earnings profile shifts in favor of older generations: the decline in earnings in the recession disproportionately impacts younger generations. It is therefore to be expected that the welfare consequences are less favorable for the young, and less detrimental for the old, relative to our benchmark in the previous section.

We now repeat our thought experiments from the previous section with the stochastically fluctuating age-earnings profile. We focus on the welfare consequences of a one-period recession

\(^{26}\)The main difference is that the SCF shows higher non-asset income for the 50 – 59 and 60 – 69 year old age groups.

\(^{27}\)The differentials across age groups turn out to be very similar when considering a much narrower measure of labor income that only includes wage and salary income.
here; for completeness Appendix G contains the asset pricing and additional welfare results.

<table>
<thead>
<tr>
<th>Age $i$</th>
<th>$\sigma = 1$</th>
<th>$\sigma = 3$</th>
<th>$\sigma = 5$</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Single Asset Economy</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-2.03%</td>
<td>-1.30%</td>
<td>-0.80%</td>
</tr>
<tr>
<td>2</td>
<td>-2.55%</td>
<td>-2.05%</td>
<td>-1.60%</td>
</tr>
<tr>
<td>3</td>
<td>-2.15%</td>
<td>-1.13%</td>
<td>-0.44%</td>
</tr>
<tr>
<td>4</td>
<td>-3.02%</td>
<td>-2.96%</td>
<td>-2.37%</td>
</tr>
<tr>
<td>5</td>
<td>-3.92%</td>
<td>-6.05%</td>
<td>-6.47%</td>
</tr>
<tr>
<td>6</td>
<td>-6.50%</td>
<td>-11.34%</td>
<td>-14.08%</td>
</tr>
<tr>
<td><strong>Fixed Portfolio Economy</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-1.97%</td>
<td>-1.20%</td>
<td>-0.45%</td>
</tr>
<tr>
<td>2</td>
<td>-2.81%</td>
<td>-3.08%</td>
<td>-2.83%</td>
</tr>
<tr>
<td>3</td>
<td>-2.31%</td>
<td>-1.49%</td>
<td>-0.81%</td>
</tr>
<tr>
<td>4</td>
<td>-3.03%</td>
<td>-2.93%</td>
<td>-2.32%</td>
</tr>
<tr>
<td>5</td>
<td>-3.73%</td>
<td>-5.68%</td>
<td>-6.12%</td>
</tr>
<tr>
<td>6</td>
<td>-5.83%</td>
<td>-10.69%</td>
<td>-13.57%</td>
</tr>
<tr>
<td><strong>Endogenous Portfolio Economy</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-2.16%</td>
<td>-0.44%</td>
<td>2.26%</td>
</tr>
<tr>
<td>2</td>
<td>-1.55%</td>
<td>-2.79%</td>
<td>-3.48%</td>
</tr>
<tr>
<td>3</td>
<td>-2.81%</td>
<td>-2.80%</td>
<td>-1.83%</td>
</tr>
<tr>
<td>4</td>
<td>-2.92%</td>
<td>-3.94%</td>
<td>-4.04%</td>
</tr>
<tr>
<td>5</td>
<td>-3.86%</td>
<td>-5.36%</td>
<td>-6.45%</td>
</tr>
<tr>
<td>6</td>
<td>-8.22%</td>
<td>-8.05%</td>
<td>-9.73%</td>
</tr>
</tbody>
</table>

From Table 9 (the counterpart of Table 6) we observe that the welfare losses of the elderly from a recession are now mitigated, and that the young lose more (or gain less). Nevertheless, our results are qualitatively robust: welfare losses increase with age, and the oldest households lose the most. In addition, if the asset price decline is sufficiently large relative to the fall in output and earnings, then the youngest households continue to benefit from becoming economically active in a recession, despite the severe decline in labor income they experience. Similar findings extend to the six-period recession experiment (see Appendix G).
8 Conclusion

In this paper we have analyzed the distributional consequences of a large recession across different age cohorts. For a quantitative version of our stochastic overlapping generations economy restricted to match life cycle income and asset profiles from the SCF we find that older households suffer large welfare losses from a severe recession. Young households, in contrast, lose less and might even benefit from an economic downturn. The key statistic determining these welfare consequences is the size of the asset price decline, relative to the fall in wages and output. If households have a low intertemporal elasticity of substitution, then older households are pressed to sell their assets in a downturn in order to smooth consumption, putting additional downward pressure on asset prices. This generates larger welfare losses for older households and potential welfare gains for households that become economically active during the recession.

Our model also has strong predictions for how the recession affects the wealth distribution across households of different ages. Once the 2010 SCF is available we will be able to evaluate whether the model predictions along this dimension are consistent with the data. At this point we need to defer this to future research.
References


Appendix

A Economy with Endogenous Portfolios and Complete Markets

Since in our applications the number of values the aggregate state can take is 2, markets are sequentially complete when households can trade a bond and a stock. For computational reasons it is easier to first solve an economy with a complete set of contingent claims, and then to construct from the equilibrium the prices of stocks and bonds. We use tildes to denote complete market objects. Let \( \tilde{s}_i(z') \) be an asset purchased by a household of age \( i \) that delivers one share next period (i.e. entitles to the price and dividend of one share), but only if aggregate state \( z' \) is realized. The state of the economy is now the distribution of shares of stocks, and is given by \( S' \), as in the one-asset economy. Denote the state contingent prices by \( \tilde{p}(z', S, z') \). The price of the firm today, after it has paid out dividends \( d(z') = \theta z' \), is denoted by

\[
\tilde{p}(z, S) = \sum_{z' \in Z} \tilde{p}(z, S, z')
\]

(19)

With this asset market structure the maximization problem of the households now reads as

\[
\tilde{v}_i(z, S, s) = \max_{c \geq 0, s'(z')} \left\{ u(c) + \beta_{i+1} \sum_{z' \in Z} \Gamma_{z, z'} \tilde{v}_{i+1}[z', S'(z'), s'(z')] \right\}
\]

(20)

s.t.

\[
c + \sum_{z'} s'(z') \tilde{p}(z, S, z') = \varepsilon_i w(z) + [\tilde{p}(z, S) + \theta z] s
\]

(21)

\[
S'(z') = \tilde{G}(z, S, z')
\]

(22)

with solution \( \tilde{c}_i(z, S, s), \tilde{s}'_i(z, S, s, z') \).

Definition 3. A recursive competitive equilibrium with complete markets, are value, policy and shares laws of motion functions \( \{\tilde{v}_i, \tilde{c}_i, \tilde{s}'_i(z')\} \), pricing functions \( w, \tilde{p} \) and an aggregate law of motion \( \tilde{G} \) such that

1. Given the pricing functions and the aggregate law of motion the value functions \( \{\tilde{v}_i\} \) solve the recursive problem of the households and \( \{\tilde{c}_i, \tilde{s}'_i\} \) are the associated policy functions.

2. Wages and dividends satisfy

\[
w(z) = (1 - \theta)z \quad \text{and} \quad d(z) = \theta z
\]

(23)

Complete markets allow us to construct securities that only pay in some states of the world yielding for well-behaved household maximization problems. Solving the portfolio choice problem between bonds and stocks is much harder because the returns on both assets are very co-linear.
3. Markets clear

\[ \sum_{i=1}^{l} \tilde{G}_i(z, S, z') = 1, \quad \forall z' \in Z. \quad (24) \]

4. Consistency (representative agent)

\[ S'_1 = 0 \]
\[ S'_{i+1} = \tilde{G}_i(z, S, z') = \tilde{s}_i(z, S, S, z') = \forall z', i \in Z \times I - 1. \quad (25) \]

Note that the no arbitrage condition (that shares can be bought directly or by means of state contingent contracts) is built into the definition of \( \tilde{p}(z, S) \) in equation (19). Also note that from state contingent prices of shares \( \tilde{p} \), and the law of motion of the the wealth distribution we can construct the gross risk free interest rate as:

\[ 1 + \tilde{r}(z, S) = \frac{1}{\sum z' \tilde{p}(z', G(z, S, z')) z'} \quad (26) \]

while the realized gross real returns on risky stocks depends on the shocks of two consecutive periods and is given by

\[ 1 + \tilde{r}(z, S, z') = \frac{\tilde{p}[z', \tilde{G}(z, S, z')] + z' \theta}{\tilde{p}(z, S)}. \quad (27) \]

In order to talk about portfolio shares in risky versus safe assets, we introduce redundant assets representing a risk free bond as well as a non state contingent share in a levered firm. Let \( B \) be the number of bonds issued by the firm in every period and state of the world and \( \tilde{p}^b(z, S) \) be the price of such a bond. There are two ways of ensuring one unit of good unconditionally in the next period. One could either buy the risk free bond or instead by \( \tilde{b}(z, S, z') \) shares of the state contingent share, where:

\[ \tilde{b}(z, S, z') = \frac{1}{\tilde{p}(z', G(z, S, z')) + \theta z'} \quad (28) \]

A no arbitrage argument yields the price of the risk free bond

\[ \tilde{p}^b(z, S) = \sum_{z'} p(z, S, z') \tilde{b}(z, S, z') \quad (29) \]

To price the non-contingent share of the levered firm, note that the dividend is now:

\[ \tilde{d}(z, S) = \theta z + \tilde{p}^b(z, S)B - B \quad (30) \]
One can buy a non-contingent claim to this dividend by either purchasing a share or by purchasing 
\( \tilde{e}(z, S, z') \) shares of each state contingent share, where:

\[
\tilde{e}(z, S, z') = \frac{d(z', G(z, S, z')) + \tilde{p}^s(z'')}{\tilde{p}(z', G(z, S, z')) + \theta z'}
\]  

(31)

A recursive equation for \( \tilde{p}^s(z, S) \) is therefore attained as:

\[
\tilde{p}^s(z, S) = \sum_{z'} \tilde{p}(z, S, z') \tilde{e}(z, S, z')
\]  

(32)

Since buying one share for each state contingency is the same as buying the entire non-contingent levered firm and all outstanding debt we have that \( \tilde{p}(z, S) = \tilde{p}^s(z, S) + \tilde{p}^b(z, S)B \), which allows us to simplify (32) to:

\[
\tilde{p}^s(z, S) = \tilde{p}(z, S) - \tilde{p}^b(z, S)B.
\]  

(33)

B Asset Prices in the Representative Agent Economy

Suppose the representative agent invests fraction \( \lambda \) of savings in stocks, and \( 1 - \lambda \) in bonds. Let \( c(z, a) \) and \( y(z, a) \) denote optimal consumption and savings, and let \( p(z) \) and \( q(z) \) be the equilibrium prices for stocks and bonds. Note that there is no need to keep track of aggregate wealth as a state: by assumption, the supply of capital is constant and equal to one. Thus prices can only depend on the shock \( z \).

The dynamic programming problem for a household is

\[
v(z, a) = \max_{c \geq 0, y} \left\{ u(c) + \beta \sum_{z' \in Z} \Gamma_{z, z'} v(z', a'(z', y)) \right\}
\]

subject to

\[
c + y = (1 - \theta)z + \left( p(z) + d(z) + \tilde{B} \right) a
\]

and the law of motion

\[
a'(z', y) [p(z') + d(z') + B] = \left( \frac{\lambda [p(z') + d(z')]}{p(z)} + \frac{(1 - \lambda)}{q(z)} \right) y
\]

The solution to this problem yields decision rules \( c(z, a), y(z, a) \).
Given the preferences and technology described above, the market clearing conditions are simply

$$\lambda y(z, 1) = p(z)$$
$$\quad (1 - \lambda)y(z, 1) = q(z)B$$
$$\quad c(z, 1) = z$$

The individual and aggregate consistency condition is

$$a'(z', y(z, 1)) = 1$$

Now suppose the process for \(z\) is a 2-state Markov chain. There are just two equity prices to solve for \(p(z) \in \{p_l, p_h\}\). Recall, from the OLG version of the model that given an exogenous portfolio split defined by \(\lambda\), the return to equity is \((\lambda \theta z' + p(z'))/p(z)\). Thus the equilibrium equity prices are defined by the solutions to the two inter-temporal first order conditions

$$p_l u'(c(z_l, a)) = \beta \sum_{z' \in Z} \Gamma_{z_l, z'} [u(c(z', a')) [\lambda \theta z' + p(z')]]$$
$$p_h u'(c(z_h, a)) = \beta \sum_{z' \in Z} \Gamma_{z_h, z'} [u'(c(z', a')) [\lambda \theta z' + p(z')]]$$

"From the market clearing conditions, \(u'(c(z, a)) = z^{-\sigma}\)."

Let \(\Gamma_h\) denote the probability of remaining in the high productivity state, and let \(\Gamma_l\) denote the probability of remaining in the low productivity state. Then the equations for pricing stocks in the two states are

$$p_h z_h^{-\sigma} = \beta \Gamma_h \lambda \theta z_h + \beta (1 - \Gamma_h) z_l^{-\sigma} (\lambda \theta z_l + p_l)$$
$$p_l z_l^{-\sigma} = \beta \Gamma_l z_l^{-\sigma} (\lambda \theta z_l + p_l) + \beta (1 - \Gamma_l) z_h^{-\sigma} (\lambda \theta z_h + p_h)$$

"From the first"

$$p_h = \frac{\beta \Gamma_h \lambda \theta z_h + \beta (1 - \Gamma_h) z_l^{-\sigma} (\lambda \theta z_l + p_l)}{(1 - \beta \Gamma_h)}$$

Substituting this into the second

$$p_l = \frac{\beta \Gamma_l z_l^{-\sigma} \lambda \theta z_l + \beta (1 - \Gamma_l) z_h^{-\sigma} \left( \lambda \theta z_h + \frac{\beta \Gamma_h \lambda \theta z_h + \beta (1 - \Gamma_h) z_l^{-\sigma} \lambda \theta z_l}{(1 - \beta \Gamma_h)} \right)}{z_l^{-\sigma} \left( \frac{1 - \beta (1 + \beta (1 - \Gamma_h - \Gamma_l))}{1 - \beta \Gamma_h} \right)}$$

Since the expression for \(p_h\) is symmetric, we can take the ratio to express the ratio of prices across
states as a function of fundamentals
\[
p_h = z_h \left( \frac{(1 - \Gamma_h) z_1^{1-\sigma} z_h^{\sigma - 1} + (\beta + \Gamma_h - \beta \Gamma_h - \beta \Gamma_l)}{(1 - \Gamma_l) z_l^{1-\sigma} z_l^{\sigma - 1} + (\beta + \Gamma_l - \beta \Gamma_h - \beta \Gamma_l)} \right)
\]

Note that \( \lambda \) has dropped out here: the ratio of stock prices does not depend on either \( \lambda \) or \( \theta \), though the level of prices does. Defining \( \tilde{p} = \frac{p_h}{p_l}, \tilde{z} = \frac{z_h}{z_l} \) we have
\[
\tilde{p} = \tilde{z} \left( \frac{(1 - \Gamma_h) \tilde{z}^{\sigma - 1} + (\beta + \Gamma_h - \beta \Gamma_h - \beta \Gamma_l)}{(1 - \Gamma_l) \tilde{z}^{1-\sigma} + (\beta + \Gamma_l - \beta \Gamma_h - \beta \Gamma_l)} \right).
\]

Note that if aggregate shocks are iid, then \( 1 - \Gamma_l = \Gamma_h \) and \( \tilde{p} = \tilde{z}^\sigma \).
The same result is obtained for \( \sigma = 1 \), even without the iid assumption.

C Solution of Economy with Log-Utility

We will verify that the conjectured expressions for prices and allocations satisfy households’ budget constraints, households’ intertemporal first order conditions, and all the market clearing conditions.

Recall that \( \sum_{i=1}^{l} \epsilon_i = 1, \bar{A}_1 = 0 \) and \( \sum_{i=1}^{l} \bar{A}_i = 1 \). It is then straightforward to verify that the expressions for \( \lambda_i(z, \bar{A}, \bar{A}_i) \), \( c_i(z, \bar{A}, \bar{A}_i) \) and \( y_i(z, \bar{A}, \bar{A}_i) \) satisfy the market clearing conditions for goods, stocks and bonds.

The next step is to verify that the conjectured decision rules \( c_i(z, \bar{A}, \bar{A}_i) \) and \( y_i(z, \bar{A}, \bar{A}_i) \) satisfy the household budget constraints. Given identical portfolios all households earn the return to saving. Substituting in the candidate expressions for prices and portfolio shares, the gross return to saving conditional on productivity being \( z_{-1} \) in the previous period and \( z \) in the current period is
\[
\frac{\bar{\lambda} (p(z, \bar{A}) + d(z, \bar{A}))}{p(z_{-1}, \bar{A})} + \frac{(1 - \bar{\lambda})}{q(z_{-1}, \bar{A})} \frac{z (\bar{p} + \theta + \bar{q}B)}{z_{-1} (\bar{p} + \bar{q}B)}
\]

Given this expression for returns, consumption for a household of age \( i \) is
\[
c_i(z, \bar{A}) = (1 - \theta) \epsilon_i z + y_{i-1}(z_{-1}, \bar{A}) \left( \frac{z (\bar{p} + \theta + \bar{q}B)}{z_{-1} (\bar{p} + \bar{q}B)} \right) - y_i(z, \bar{A})
\]

Substituting in the candidate expression for \( y_i(z, \bar{A}) \) gives
\[
c_i(z, \bar{A}) = z \left[ (1 - \theta) \epsilon_i + \theta \bar{A}_i + (\bar{A}_i - \bar{A}_{i+1}) (\bar{p} + \bar{q}B) \right]
\]
which is the conjectured expression for equilibrium consumption.

The final fact to verify is that agents’ intertemporal first order conditions with respect to stocks and bonds are satisfied, i.e.

\[
\frac{q(z, \bar{A})}{c_i(z, \bar{A}, \bar{A}_i)} = \beta_{i+1} \sum_{z' \in Z} \Gamma_{z,z'} \frac{1}{c(z', \bar{A}, \bar{A}_i)} \quad \forall i = 1, \ldots, l - 1
\]

\[
\frac{p(z, \bar{A})}{c_i(z, \bar{A}, \bar{A}_i)} = \beta_{i+1} \sum_{z' \in Z} \Gamma_{z,z'} \left( \frac{p(z', \bar{A}) + d(z', \bar{A})}{c(z', \bar{A}, \bar{A}_i)} \right) \quad \forall i = 1, \ldots, l - 1
\]

Substituting in the conjectured expressions for \(q(z, \bar{A})\), \(p(z, \bar{A})\) and \(c_i(z, \bar{A}, \bar{A}_i)\) gives

\[
\bar{p} = \kappa_{i+1}(\bar{A}) \sum_{z' \in Z} \Gamma_{z,z'} \left[ z' \bar{p} + \theta z' - B + z' \bar{q} B \right]
\]

(34)

\[
\bar{q} = \kappa_{i+1}(\bar{A}) \sum_{z' \in Z} \Gamma_{z,z'} \frac{1}{z'}
\]

(35)

where

\[
\kappa_{i+1}(\bar{A}) = \beta_{i+1} \frac{\left[ (1 - \theta) \varepsilon_i + \theta \bar{A}_i + (\bar{A}_i - \bar{A}_{i+1}) (\bar{p} + \bar{q} B) \right]}{\left[ (1 - \theta) \varepsilon_{i+1} + \theta A_{i+1} + (A_{i+1} - A_{i+2}) (\bar{p} + \bar{q} B) \right]}
\]

(Note from these first order conditions that the conjectured expressions for \(p(z, \bar{A})\) and \(q(z, \bar{A})\) cannot be valid for shocks that are not iid over time, because absent iid shocks, the right hand sides of (34) and (35) would be functions of \(z\).)

Adding the two first order conditions for stocks and bonds gives

\[
\bar{p} + \bar{q} B = \kappa_{i+1}(\bar{A}) (\bar{p} + \bar{q} B + \theta) \quad \forall i = 1, \ldots, l - 1
\]

(36)

This is the first order condition for pricing claims to capital for a non-stochastic life-cycle economy, in which the constant asset price is \(\bar{p} + \bar{q} B\) and constant asset income is \(\theta\). The \(l = 1\) equations 36 combined with \(\bar{A}_1 = 0\) and the market clearing condition \(\sum_{i=1}^l \bar{A}_i = 1\) can be used to solve for \(\{\bar{A}_i\}_{i=1}^l\) and \(\bar{p} + \bar{q} B\). This system of equations has a solution, because it defines a standard non-stochastic general equilibrium life-cycle economy. Note that for these conditions to be satisfied for all agents it must be the case that

\[
\kappa_{i+1}(\bar{A}) = \kappa \quad \forall i = 1, \ldots, l - 1
\]
The solution for the value of aggregate wealth relative to output is then given by

\[
\frac{p(z, \bar{A}) + q(z, \bar{A})B}{z} = \bar{p} + \bar{q}B = \frac{\bar{r}\theta}{1 - \bar{r}}
\]

This supports the final claim in the proposition, namely that the value of aggregate wealth relative to output is independent of the distribution for \(z\), and independent of \(B\).

Given \(\{\bar{A}_i\}_{i=1}^I\) and \(\bar{p} + \bar{q}B\) the only remaining relative price still to be determined is the relative price of stocks and bonds. We need to verify that there exists a ratio \(\bar{p}/\bar{q}\) which supports the conjectured portfolio split \(\bar{\lambda}\) for each age group. From equations (34) and (35) and the relative valuation of stocks and bonds is equal across age groups. Specifically (and now using the iid assumption to simplify the expressions):

\[
\frac{\bar{p}}{\bar{q}} = \frac{\bar{p} + \theta + \bar{q}B - B\sum_{z'\in Z} \Gamma z' \frac{1}{z'}}{\sum_{z'\in Z} \Gamma z' \frac{1}{z'}}
\]

which is independent of age group \(i\). The reflects the fact that consumption of all age groups is equally sensitive to aggregate productivity, and thus (given common constant relative risk aversion) all age groups require the same equity premium to support the conjectured (symmetric) portfolios. When the value of aggregate wealth is given by (36) and the ratio of stock to bond prices by (37), all agents first order conditions are satisfied.

The expression for the equity premium in the corollary follows from substituting in the candidate expressions for \(p(z, \bar{A})\) and the expression for \(q(z, \bar{A})\) into equation (37).

**D Asset Prices in the Two Period Overlapping Generations Economy**

Recall that the budget constraints when young and old are

\[
\begin{align*}
c_1(z) &= (1 - \theta)z - p(z) \\
c_2(z) &= \theta z + p(z)
\end{align*}
\]

while share prices are pinned down the young generation’s inter-temporal first order condition:

\[
p(z) [(1 - \theta)z - p(z)]^{-\sigma} = \beta \sum_{z'\in \{z_L, z_H\}} \Gamma_{z,z'} [\theta z' + p(z')]^{-\sigma} [\theta z' + p(z')]
\]

Let \(\tilde{p} = \frac{p_{z_H}}{p_{z_L}}\) and \(\tilde{z} = \frac{z_H}{z_L}\). In terms of these variables, the inter-temporal first order conditions, conditional on the current state being \(z_L\) and \(z_H\) are, respectively:

\[
\begin{align*}
((1 - \theta)\tilde{x} - 1)^{-\sigma} &= \beta \Gamma_{z_L, z_L} (\theta \tilde{x} + 1)^{1-\sigma} + \beta \Gamma_{z_L, z_H} (\theta \tilde{z} \tilde{x} + \tilde{p})^{1-\sigma} \\
\tilde{p} ((1 - \theta)\tilde{z} \tilde{x} - \tilde{p})^{-\sigma} &= \beta \Gamma_{z_H, z_L} (\theta \tilde{x} + 1)^{1-\sigma} + \beta \Gamma_{z_H, z_H} (\theta \tilde{z} \tilde{x} + \tilde{p})^{1-\sigma}
\end{align*}
\]

50
Our goal is to solve for $\bar{p}$ as a function of $\bar{z}$. However, except for the special case $\sigma = 1$, this system of equations cannot be solved in closed form. So instead we will linearize these equations, and look for an approximate solution for relative prices as a linear function of relative productivity.

We proceed as follows:

1. Take first-order Taylor-series approximations to these two first order conditions around the non-stochastic steady state values for $\bar{p}$, $\bar{z}$, and $\bar{x}$, which we denote $P$, $Z$ and $X$ (where $Z = P = 1$). This gives a system of two equations in three first-order terms ($\bar{x} - X$), ($\bar{z} - Z$) and ($\bar{p} - P$):

\[
\begin{pmatrix}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23}
\end{pmatrix}
\begin{pmatrix}
\bar{x} - X \\
\bar{z} - Z \\
\bar{p} - P
\end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}
\]

where

\[
A_{11} = -\sigma (\frac{(1 - \theta)X - 1}{\theta} - (1 - \sigma)^{-\sigma} (1 - \theta) - ((1 - \sigma)^{\sigma} \Gamma_{ZL, zL} (\theta X + 1)^{-\sigma} \theta + (1 - \sigma) \beta \Gamma_{ZL, zH} (\theta X + 1)^{-\sigma} \theta)
\]

\[
A_{12} = - (1 - \sigma) \beta \Gamma_{ZL, zH} (\theta X + 1)^{-\sigma} \theta X
\]

\[
A_{13} = - (1 - \sigma) \beta \Gamma_{ZL, zH} (\theta X + 1)^{-\sigma}
\]

\[
A_{21} = - \sigma (\frac{(1 - \theta)X - 1}{\theta} - (1 - \sigma)^{-\sigma} (1 - \theta) - ((1 - \sigma)^{\sigma} \Gamma_{ZH, zL} (\theta X + 1)^{-\sigma} \theta + (1 - \sigma) \beta \Gamma_{ZH, zH} (\theta X + 1)^{-\sigma} \theta)
\]

\[
A_{22} = - \sigma (\frac{(1 - \theta)X - 1}{\theta} - (1 - \sigma)^{-\sigma} (1 - \theta) - ((1 - \theta)X - 1)^{-\sigma} - (1 - \sigma) \beta \Gamma_{ZH, zH} (\theta X + 1)^{-\sigma}
\]

\[
A_{23} = \sigma (\frac{(1 - \theta)X - 1}{\theta} - (1 - \sigma)^{-\sigma} + ((1 - \theta)X - P)^{-\sigma} - (1 - \sigma) \beta \Gamma_{ZH, zH} (\theta X + 1)^{-\sigma}
\]

2. Use the first equation in this system to solve for ($\bar{x} - X$) as a linear function of ($\bar{z} - Z$) and ($\bar{p} - P$):

\[
(\bar{x} - X) = - \frac{A_{12}}{A_{11}} (\bar{z} - Z) - \frac{A_{13}}{A_{11}} (\bar{p} - P)
\]

Then substitute this solution into the second equation, and solve for ($\bar{p} - P$) as a function of ($\bar{z} - Z$):

\[
(\bar{p} - P) = - \frac{A_{21}}{A_{23}} (\bar{x} - X) - \frac{A_{22}}{A_{23}} (\bar{z} - Z)
\]

\[
= - \frac{A_{21}}{A_{23}} \left( - \frac{A_{12}}{A_{11}} (\bar{z} - Z) - \frac{A_{13}}{A_{11}} (\bar{p} - P) \right) - \frac{A_{22}}{A_{23}} (\bar{z} - Z)
\]

Thus

\[
\xi^2 \approx \frac{\bar{p} - P}{\bar{z} - Z} = \frac{A_{21}A_{12} - A_{22}A_{11}}{A_{23}A_{11} - A_{21}A_{13}}
\]
3. Now assume productivity shocks are iid., so that $\Gamma_{zL,zH} = \Gamma_{zH,zH} = \Gamma_{zL,zL} = 1 - \Gamma_{zH}$. Under this iid. assumption, $A_{11} = A_{21}$ and thus

$$\xi^2 \approx \frac{A_{21}A_{12} - A_{22}A_{21}}{A_{11}A_{22} - A_{21}A_{13}} = \frac{A_{12} - A_{22}}{A_{23} - A_{13}} = \frac{\sigma(1 - \theta)}{X - X\theta - 1 + \sigma}$$

Recall that $X$ is the inverse of the steady state stock price, so we can equivalently write this elasticity in terms of the steady state gross interest rate. where $R = \theta X + 1$:

$$\xi^2 \approx \frac{\sigma(1 - \theta)}{1 - \frac{\theta(R - \sigma)}{(R - 1)}}$$

This is the expression given in the text.

4. In the special case in which $\theta$ is such that $R = \frac{1}{\beta}$, the expression simplifies further. For this interest rate to satisfy the young agent’s inter-temporal first order condition in the non-stochastic steady state, it must be the case that $c_1 = c_2$ which implies, by equating the young and old’s budget constraints that

$$\theta = 1 - \frac{2\beta}{2}$$

Then the relationships $R = \frac{\theta}{\beta} + 1$, and $\beta R = 1$ imply

$$\theta = \frac{1}{2} (1 - \beta)$$

Substituting this into the expression for $\xi^2$ gives

$$\xi^2 \approx \frac{\sigma(\beta + 1)}{\sigma \beta + 1}$$

which is the expression for this special case given in the text.

E Asset Prices in the Economy with Exogenous Portfolios

In this section we briefly relate asset prices in the two asset economy with exogenous portfolios to the price of the stock in the one asset economy. To do so, first note that in the two-asset economy, if all age groups were to have the same exogenous portfolio allocations, $\lambda_i = \lambda$, then the two market clearing conditions for stocks and bonds imply a parametric relationship between $\hat{p}(z,A)$ and $\hat{q}(z,A)$:

$$\frac{\hat{p}(z,A)}{\lambda} = B \frac{\hat{q}(z,A)}{(1 - \lambda)}$$
Moreover, the realized gross real return to the portfolio is identical across age cohorts, and is given by
\[
R(z, A; z', A') = \lambda \left( \frac{\hat{p}(z', A') + \hat{d}(z', A')}{\hat{p}(z, A)} \right) + (1 - \lambda) \frac{1}{\hat{q}(z, A)} \frac{\hat{p}(z', A') + \lambda \theta z'}{\hat{p}(z, A)}
\]
where the equality follows from substituting in the definition for \( \hat{d}(z', A') \) and the equation relating \( \hat{p}(z, A) \) and \( \hat{q}(z, A) \).

For the case \( \lambda = 1 \), this reduces to the familiar return on equity from a one-asset economy:
\[
R(z, A; z') = \frac{\hat{p}(z', A')}{\hat{p}(z, A)}
\]

For \( \lambda < 1 \), the equilibrium stock price \( \hat{p} \) in the two asset economy is related to the stock price \( p \) in the one-asset economy by
\[
\hat{p}(z, A) = \lambda p(z, A).
\]
Given this price, the return to saving in the two asset economy (when households are forced to hold a portfolio characterized by \( \lambda \)) is the same, state-by-state, as in the one-asset economy. The resulting equilibrium bond price in the two asset economy is given by
\[
\hat{q}(z, A) = \frac{(1 - \lambda)p(z, A)}{B}.
\]
and the conditional multiplicative equity premium is given by
\[
E \left( \frac{\hat{p}(z', A') + \hat{d}(z', A')}{\hat{p}(z, A)} \frac{1}{\hat{q}(z, A)} \middle| z, A \right) = \frac{1 - \lambda}{\lambda} \left[ \frac{p(z, A)}{B} E \left( \frac{p(z', A') + \theta z'}{p(z, A)} \middle| z, A \right) - 1 \right].
\]
Thus for given stock returns and prices in the one-asset economy, by choice of \( \lambda \) and \( B \) one can generate an arbitrarily large equity premium in the two-asset economy with exogenous portfolios. Specifically, for a given \( \lambda \in (0, 1) \) increasing the exogenous supply of bonds \( B \) lowers the bond price, increases bond returns and thus lowers the equity premium. Similarly, fixing \( B \) and increasing the portfolio share \( \lambda \) in stocks raises the demand and thus the price of shares, lowering stock returns and thus reducing the equity premium.

Now consider the more general case, in which the exogenous portfolio shares vary with age. Denote aggregate savings and the fraction of aggregate savings in stocks by
\[
Y(z, A) = \sum_{i=1}^{k} y_i(z, A, A_i)
\]
\[ s(z, A) = \frac{\sum_{i=1}^{I} \lambda_i y_i(z, A, A_i)}{\sum_{i=1}^{I} y_i(z, A, A_i)} \]

The market clearing conditions for stocks and bonds imply
\[ s(z, A) B \quad \tilde{q}(z, A) = \tilde{p}(z, A)(1 - s(z, A)) \]

Now the multiplicative equity premium is given by
\[
E \left( \frac{\tilde{p}(z', A') + \theta z' - [(1 - \tilde{q}(z'A')) B]}{\tilde{p}(z, A) + \theta z - B} \middle| z, A \right) =
\]
\[
\frac{(1 - s(z, A))}{s(z, A) B} E \left( \frac{\tilde{p}(z', A') + \theta z' - [(1 - \tilde{q}(z'A')) B]}{\tilde{p}(z, A) + \theta z - B} \middle| z, A \right)
\]

As before, the equity premium is decreasing in \( B \) (the relative supply of bonds) and decreasing in \( s(z, A) \) (the relative demand for equity). The relative demand for equity in turn depends on the average fraction of savings devoted to stocks, and the covariance across age groups between equity shares and savings:
\[ s(z, A) = \frac{\text{cov} (\lambda_i, y_i(z, A, A_i))}{E[y_i(z, A, A_i)]} + E[\lambda_i]. \]

In the special case \( \lambda_i = \lambda \), \( s(z, A) = \lambda \) and the expressions simplify to the ones above.

### F Computational Appendix

Even for moderate number of generations the state space is large: \( N - 2 \) continuous state variables (plus \( z \)). Since we want to deal with big shocks local methods (e.g. perturbation) should be used with caution. Consequently, wherever possible, this is in the economies with either only one asset or exogenous portfolios, we have used global methods based on sparse grids, as in Krueger and Kubler (2004, 2006).

To solve the complete markets economy we solve for undetermined coefficients of the linearized aggregate prices and policies. For each generation \( i = 1, \ldots, I - 1 \) and each current shock \( z_i \), we have \( k = 1, \ldots, N \) Euler Equations of the form:
\[
0 = u'(c_i(z_j, S, S_i)) p_{j,k}(S) - \beta_i \Gamma \tilde{g} (\bar{p}_k(G_{j,k}(S)) + \theta z_k) u'(c_{i+1}(z_j, G_{j,k}(S), g^j_{j,k}(S, s, S)))
\]
That gives a total of \((I - 1) \times N^2\) conditions. In addition there are \( N^2 \) market clearing conditions,
for a total of $I \times N_z^2$ equations.

For each shock $z_j$ we compute the steady state price in an economy where TFP is constant at that level, call it $\bar{p}_j$. The steady state distribution of wealth shares is constant across these steady states, we call it $\bar{S}$. We will linearize around these points and impose price and policy functions of the form:

\[
\Delta p_{j,k}(\Delta S) = p_{j,k} - \bar{p}_j = \alpha_{j,k}^{p,0} + \alpha_{j,k}^{p,S} \Delta S
\]
\[
\Delta g_{j,k,i}(\Delta s_i, \Delta S) = \alpha_{j,k}^{i,0} + \alpha_{j,k}^{i,S} \Delta s_i + \alpha_{j,k}^{i,S} \Delta S
\]
\[
\Delta G_{j,k}(\Delta S) = \beta_{j,k}^{i,0} + \beta_{j,k}^{i,S} \Delta S
\]

The coefficients for $G$ are determined from $g$ by imposing that each individual in a generation is representative of that generation, so in effect this gives $N_z^2$ coefficients for prices plus $(I - 1) \times N_z^2$ coefficients for policies for a total of $I \times N_z^2$, where coefficients are the constant terms and on each generation’s share of aggregate wealth. We linearize the Euler Equations and market clearing conditions with respect to current state contingent prices, the current aggregate share distribution, current personal shares, future prices, and personal share demands. Imposing representativeness, this gives equations of the form (suppressing arguments where obvious):

\[
0 = \tilde{\phi}_{j,k}^i + A_{j,k}^i \Delta p_j + B_{j,k}^i \Delta S + C_{j,k}^i \Delta s_i + D_{j,k}^i \Delta G_{j,k} + E_{j,k}^i \Delta p_k + F_{j,k}^i \Delta g_{j,k} + H_{j,k}^i \Delta G_{j,k+1}(\Delta G_{j,k})
\]

Where the row vectors $A$ through $H$ are given by the gradient of the Euler Equation and the notation $x_{j,k}$ is the column vector of coefficients produced by fixing current state $j$ and stacking the values for $k = 1, ..., N_z$. The market clearing conditions are given by:

\[
0 = \sum_i \Delta G_{j,k}^i(\Delta S)
\]

In order for the linearized Euler Equations and market clearing conditions to hold for any $\Delta S$ we impose conditions on each term from the aggregates. This gives exactly the same number of coefficients as equations. The systems are stacked and an iterative procedure is used to find the solution.
### G Additional Tables with Results

Table 10: **Relative Price Declines** \( \xi = \left( \frac{\% \Delta \left(\frac{p_0}{p_{-1}}\right)}{\% \Delta \left(\frac{z_0}{z_{-1}}\right)} \right) \) (cyclical age-earnings profile)

<table>
<thead>
<tr>
<th>Economy</th>
<th>( \sigma = 1 )</th>
<th>( \sigma = 3 )</th>
<th>( \sigma = 5 )</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Asset</td>
<td>1.13</td>
<td>2.29</td>
<td>2.94</td>
</tr>
<tr>
<td>Fixed Portfolios</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>–Stock</td>
<td>1.18</td>
<td>2.45</td>
<td>3.19</td>
</tr>
<tr>
<td>–Bond</td>
<td>0.86</td>
<td>2.52</td>
<td>3.53</td>
</tr>
<tr>
<td>–Wealth</td>
<td>1.15</td>
<td>2.46</td>
<td>3.21</td>
</tr>
<tr>
<td>Endogenous Portfolios</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>–Stock</td>
<td>1.07</td>
<td>2.98</td>
<td>5.00</td>
</tr>
<tr>
<td>–Bond</td>
<td>1.05</td>
<td>3.0</td>
<td>5.01</td>
</tr>
<tr>
<td>–Wealth</td>
<td>1.07</td>
<td>2.98</td>
<td>5.00</td>
</tr>
</tbody>
</table>
Table 11: **Realized Welfare Gains from Six-Period Recession (cyclical age-earnings profile)**

<table>
<thead>
<tr>
<th>Age $i$</th>
<th>$\sigma = 1$</th>
<th>$\sigma = 3$</th>
<th>$\sigma = 5$</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Single Asset Economy</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>$-9.52%$</td>
<td>$-7.28%$</td>
<td>$-6.30%$</td>
</tr>
<tr>
<td>2</td>
<td>$-9.02%$</td>
<td>$-7.48%$</td>
<td>$-6.87%$</td>
</tr>
<tr>
<td>3</td>
<td>$-8.02%$</td>
<td>$-7.30%$</td>
<td>$-7.06%$</td>
</tr>
<tr>
<td>4</td>
<td>$-7.90%$</td>
<td>$-8.67%$</td>
<td>$-9.17%$</td>
</tr>
<tr>
<td>5</td>
<td>$-7.26%$</td>
<td>$-10.03%$</td>
<td>$-11.61%$</td>
</tr>
<tr>
<td>6</td>
<td>$-6.50%$</td>
<td>$-11.34%$</td>
<td>$-14.08%$</td>
</tr>
<tr>
<td><strong>Fixed Portfolio Economy</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>$-9.79%$</td>
<td>$-7.65%$</td>
<td>$-6.60%$</td>
</tr>
<tr>
<td>2</td>
<td>$-9.42%$</td>
<td>$-8.27%$</td>
<td>$-7.77%$</td>
</tr>
<tr>
<td>3</td>
<td>$-8.03%$</td>
<td>$-7.31%$</td>
<td>$-7.00%$</td>
</tr>
<tr>
<td>4</td>
<td>$-7.65%$</td>
<td>$-8.31%$</td>
<td>$-8.76%$</td>
</tr>
<tr>
<td>5</td>
<td>$-6.78%$</td>
<td>$-9.48%$</td>
<td>$-11.10%$</td>
</tr>
<tr>
<td>6</td>
<td>$-5.83%$</td>
<td>$-10.69%$</td>
<td>$-13.57%$</td>
</tr>
<tr>
<td><strong>Endogenous Portfolio Economy</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>$-9.13%$</td>
<td>$-6.25%$</td>
<td>$1.73%$</td>
</tr>
<tr>
<td>2</td>
<td>$-8.30%$</td>
<td>$-9.7%$</td>
<td>$-9.82%$</td>
</tr>
<tr>
<td>3</td>
<td>$-8.53%$</td>
<td>$-8.66%$</td>
<td>$-6.62%$</td>
</tr>
<tr>
<td>4</td>
<td>$-7.67%$</td>
<td>$-8.48%$</td>
<td>$-9.15%$</td>
</tr>
<tr>
<td>5</td>
<td>$-7.34%$</td>
<td>$-8.19%$</td>
<td>$-9.86%$</td>
</tr>
<tr>
<td>6</td>
<td>$-7.65%$</td>
<td>$-8.05%$</td>
<td>$-9.73%$</td>
</tr>
</tbody>
</table>