Financial support has been supplied to Blume by NSF grant CCF-0910940 and by WWTF Grant “Die Evolution von Normen und Konventionen in der Wirtschaft”, Brock by the Vilas Professorship, and Durlauf by the University of Wisconsin Graduate School and Laurits Christensen Chair in Economics, all of which is greatly appreciated. Hon Ho Kwok and Xiangrong Yu have provided superb research assistance. We are grateful for comments from Alex Rees-Jones, Michael Strain, Youcef Msaid, Nichole Szembrot and Dean Robinson, and to Charles Manski and Hashem Pesaran for discussions of the issues we address. This paper was written in honor of James J. Heckman, whose influence will be evident throughout.

Corresponding Author: Steven N. Durlauf, Department of Economics, University of Wisconsin, Madison WI 53706.
Abstract

This paper provides a systematic analysis of identification in linear social networks models. This is both a theoretical and an econometric exercise in that it links identification analysis to a rigorously delineated model of interdependent decisions. We develop a Bayes-Nash equilibrium analysis for interdependent decisions under incomplete information in networks that produces linear strategy profiles of the type conventionally used in empirical work and which nests linear social interactions models as a special case. We consider identification of both contextual and endogenous social effects under alternative assumptions on the a priori information on network structure available to an analyst and contrast the informational content of individual-level and aggregated data. This analysis is then extended to an example of a two stage game in which networks form in the first stage and outcomes occur in the second. The effects of endogenous network formation on identification are then analyzed.

JEL Codes: C21, C23, C31, C35, C72, Z13
Keywords: social networks, identification, incomplete information games
...friendship... is... most necessary with a view to living. For without friends, no one would choose to live, though he had all other goods; even rich men and those in possession of office and of dominating power are thought to need friends most of all; for what is the use of such prosperity without the opportunity of beneficence, which is exercised chiefly and in its most laudable form towards friends? Or how can prosperity be guarded and preserved without friends? The greater it is, the more exposed it is to risk. And in poverty and in other misfortunes men think friends their only refuge. It helps the young too, to keep from error; it aids older people by ministering to their needs and supplementing the activities that fail from weakness; those in the prime of life it stimulates to noble actions — ‘two going together’ — for with friends men are more able to think and to act.

Aristotle, *Nichomachean Ethics*, 8.1

1

1 Introduction

The study of social influences has become a major area of economic theory, econometrics, and empirical work, as evidenced by the surveys in Benhabib, Bisin, and Jackson (2011). Standard examples range across such disparate areas as the diffusion of technology (Conley and Udry, 2010; Munshi, 2004; Bandiera and Rasul, 2006), disease exposure (Miguel and Kremer, 2004), contraceptive practice (Kohler, Behrman, and Watkins, 2001; Iyer and Weeks, 2009), smoking (Krauth, 2006a; Soetevent and Kooiman, 2007; Nakajima, 2007), crime (Sirakaya, 2006; Ballester, Calvó-Armengol, and Zenou, 2010), education Cooley (2007); Bobonis and Finan (2009); Calvó-Armengol, Patacchini, and Zenou (2009); De Giorgio, Pellizzari, and Redaelli (2010) the take up of public welfare programs (Bertrand, Luttmer, and Mullainathan, 2000; Aizer and Currie, 2004), labor market outcomes (Topa, 2001; Munshi, 2003; Bayer, Ross, and Topa, 2008), and even obesity (Fowler and Christakis (2008) but see Cohen-Cole and Fletcher (2008)). This work is now broad enough to justify the claim that it constitutes a new field of “social economics”, a term that was proposed by

Becker and Murphy (2000) when the consideration of social factors first began to play a major role in economic analysis.

Within the broad area of social economics, the study of social networks has arguably become the most prominent area of research. From the perspective of economic theory, social network analysis is now a well established area of specialization. (See Jackson (2008) and Goyal (2009) as well as the relevant chapters in Benhabib, Bisin, and Jackson (2011) for overviews of the existing theory.) Further, it is is common for empirical papers to invoke social networks as the underlying structure by which social influences are transmitted. One standard example is information transmission.

While the theoretical and empirical literatures on social networks have expanded greatly over the last decade, there has been little contact between them. There has been remarkably little work on formal econometric issues, in particular, identification. This is especially surprising since there is now a rich literature on identification problems in social interactions models — a subset of social network models which assumes that individuals belong to predefined groups wherein all group members influence each other with equal intensity.²

The identification literature on social interactions has, since Manski (1993), demonstrated that important limits exist to identification. In particular, the so-called linear-in-means model, the workhorse of empirical research on social interactions, raises classical simultaneity problems.³ This issue was first exposed by Manski, who dubbed it “the reflection problem”. The main exceptions to this absence of formal identification work for social networks models are Bramoullé, Djebbari, and Fortin (2009) and Blume, Brock, Durlauf and Ioannides (2011).⁴

²See Blume et al. (2011) for a review.
³“Linear-in-means” captures the idea that an individual’s behavior depends on the average behavior and/or characteristics of members of his group.
⁴Mention should also be made of two other approaches. First, there is a literature on uncovering network structure given covariances of outcomes. The state of the art in this work is Drton, Foygel, and Sullivant (2011) who examine global identification of the parameters a_{ij} for models of the form $\omega_i = \sum_{j \neq i} a_{ij} \omega_j + \epsilon_i$. We discuss this work in section 5.i. Second, Lee (2007) and Lee, Liu, and Lin (2010) use ideas from the spatial statistics literature to model social networks and address identification problems pertaining to social factors. This work takes a much more restrictive view of networks than we do because of the assumption that agents are located in an associated spatial interaction structure that generalizes the notion of a Markov process. Conley and Topa (2002) propose ways of measuring proximity in social space, but construct measures that are used to test for spatial dependence, rather than measure social influences in the way in
Bramoullé, Djebbari and Fortin provide a condition on the matrix defining social interactions which is sufficient for identification of parameters in the model they consider. They also demonstrate how Manski’s reflection problem can arise when their condition is not met. Blume, Brock, Durlauf, and Ioannides show that identification is generic in a precise sense in this class of linear models. They also begin the exploration of the identification of social network effects when the weighting matrix is not known. This is certainly the case in most existing data sets. Finally, they provide an explicit microeconomic foundation for the linear in means model. They show that differences between the Manski and Bramoullé, Djebbari, and Fortin results involve the use of approximations to the appropriate underlying Bayes-Nash equilibrium that produces linear behavioral equations. Both of these papers argue that the social interactions models that have been the basis of the existing econometric literature are a special case of a general social networks structure.

Although research on the identification problem has begun, a systematic investigation of the issues facing an empiricist has yet to be undertaken. Four examples serve to illustrate this gap. First, little thought has been given to distinct transmission mechanisms for endogenous social influence (i.e. the influence of expected behaviors of others on a given individuals’ actions), and for contextual social influence (the influence of exogenous characteristics on a given individual’s choices). Surprisingly, existing models assume these mechanisms are sufficiently similar that they can be described by the same matrix of social weights. There is no reason why this should be so and it is easy to imagine cases where the networks would differ. Within a classroom, conformity effects may lead students to be more sensitive to the effort of those students of like ethnicity and gender, while the desire to perform well relative to the class distribution may induce a different network effect based on the past performance of other students. Models that make distinctions between the different endogenous- and contextual-effects transmission mechanisms are better grounded in theories of social influence and can have different statistical properties that provide alternative paths to identification.

Second, the impact of endogenous network construction is rarely addressed in systematic fashion. Structural models of network formation are typically not linked to behavior within networks. Instead network endogeneity is addressed using instrumental variables are employed whose validity is often unclear when which we conceptualize them.
one considers network formation and behavior in networks as two stages of a game.

Third, to the best of our knowledge, there exists no existing discussion of the informational content of aggregated data for network effects. The few studies examining aggregate data, most notably Glaeser et al. (1996) and Graham (2008), focus on the use of aggregate data to estimate particular parameters or provide evidence of some type of social effect rather than assess overall information content.

Finally, while Blume, Brock, Durlauf and Ioannides provide examples of identification under partial network observability, this question has received very little attention in econometrics. A partial exception is Conley and Topa (2003) who explore mismeasurement of groups in social interaction models.

This paper provides a systematic analysis of identification in linear social networks models. This is both a theoretical and an econometric exercise in that it links identification analysis to a rigorously delineated model of interdependent decisions. The paper proceeds as follows: Section 2 describes a social network game from which the linear model emerges as a unique equilibrium. This section introduces different mechanisms for the spread of endogenous and contextual effects through the network. Section 3 provides the conceptual framework we use to study identification. Section 4 explores identification when the network structure is both exogenous and known \textit{a priori}. It considers how differences in the spread of contextual and peer effects can aid identification. It also addresses identification from aggregate data. Section 5 considers identification when the network is exogenously given but not observed by the econometrician. Section 6 takes up endogenous mechanism. The theoretical model of section 2 is extended to a simple network formation game. Two different models of preferences for networks are discussed, and identification conditions are developed. The possibility for extending control function techniques to account for network endogeneity is discussed. Section 7 concludes. A technical appendix follows which contains all proofs.
2 A social networks game

In this section we provide an explicit derivation of a linear social networks model for individual behavior as the Bayes-Nash equilibrium for a social networks game and demonstrate that these linear behavioral rules are the unique descriptions for individual behavior. An analogous result is developed for social interactions models in Blume et al. (2011). As is the case for the earlier derivation, the unsurprising key to justifying linear social networks models as econometric specifications for individual behavior is to assume that individual agents possess quadratic payoff functions. As such our model is a species of quadratic interaction games that have become popular in different contexts.

i. the quadratic social networks model

The social networks game we describe is a game of incomplete information. In this game, each individual is described by a bundle of characteristics, some observed by everyone, including the econometrician, some observable to individuals in the population but not to the econometrician, and some private to the individual. Individuals have preferences over their actions, which are the sum of a private component and a social component. The private component, which is quadratic in an individual's own actions, varies across individuals. Some part of the variation is common knowledge, and some is private. The social component is common to all individuals. Each individual's utility is decreasing in the distance between his action and a weighted average of the actions of those who influence him. The equilibrium concept is Bayes-Nash: Individuals choose an action to maximize their expected utility given their information about themselves and the public information about everyone in the population. Equilibrium beliefs are constructed from the individuals' strategy functions and the common prior belief. Our assumptions imply that equilibrium strategies are linear decision rules of the type that are standard in the empirical literature.

5Game theoretic models are usually interpreted to have individual preferences over outcomes, which are jointly determined by player actions. Alternatively, they may be viewed as models of externalities, where individuals' preferences over their own choices are mediated by the decisions of other players. Here we adopt the latter view.
The population of network participants, the set of players, is a set V containing $|V| < \infty$ members. Each individual is described by a vector of characteristics in \mathbb{R}^{P+2}, a vector (x_i, ν_i, ϵ_i) where $x_i \in \mathbb{R}^P$ is a vector observable to all network participants and to the (presumably external) econometrician, $\nu_i \in \mathbb{R}$ is observable to the network but not to the econometrician, and $\epsilon_i \in \mathbb{R}$, i's private type, is observable only by himself. In Bayesian games, individuals are described by types, which detail who they are and what they know. The vector $(x_i, \nu_i, \epsilon_i)_{i \in V} \in \mathbb{R}^{|V|(P+2)}$ is the state of the game. The type of individual i when the game is in this state is the vector $t_i = (x, \nu, \epsilon_i)$. Individual i's type reflects his characteristics and the public knowledge he observes, namely, the x_j and ν_j of other individuals. The a priori distribution of game states is exogenous, and is described by a probability distribution ρ. Knowledge of ρ is common to all individuals.

Each individual chooses an $\omega_i \in \mathbb{R}$. Individual i's utility is a function of his type, his action, and the actions of others in the population. His payoff function is

$$u_i(\omega_i, \omega_{-i}) = \left(\sum_{p=1}^{P} \left(\gamma^p x_i^p + \delta^p \sum_j c_{ij} x_j^p \right) + \nu_i + \epsilon_i \right) \omega_i$$

$$- \frac{1}{2} \omega_i^2 - \frac{\phi}{2} \left(\omega_i - \sum_{j \neq i} a_{ij} \omega_j \right)^2 . \quad (1)$$

This payoff function takes as special cases many of payoff functions that have at least implicitly appeared in the literature. As far as we know our analysis is the first fully rigorous demonstration of existence and uniqueness for a general quadratic social networks model.

The first two terms constitute the component of the payoff functions that is independent of the choices of others; we call this the private component of the payoff function. The marginal private value of the individual's choice depends upon his characteristics and a weighted average of the characteristics of others, computed with the weights c_{ij}. The matrix of these weights is C. The final component captures a purely social component to payoffs in that the component depends on the choices of others. It is quadratic and decreasing in the squared distance between the individual's choice and a weighted average of the choices.

A note on notation: For any individual-level vector z_i, the unsubscripted vector z refers to the vector $(z_i)_{i \in V}$ and z_{-i} is the vector obtained from z by omitting z_i.
of others, computed with weights \(a_{ij} \). The matrix of these weights is \(A \). The parameter \(\phi \) determines the weight placed on the public component relative to the private component. Accordingly, \(\phi \geq 0 \). Note that if the values of the \(c_{ij} \)'s and the \(a_{ij} \)'s are known \textit{a priori}, there are \(2P + 1 \) utility parameters which determine choice.

The private component includes a conventional externality, that network average characteristics are a kind of group capital or public good. This is expressed in the term \(\sum_{p=1}^{P} \delta^p \sum_{j} c_{ij} x_{ij}^p \). The literature refers to this term as the \textit{contextual effect}. Here we have extended the idea from groups, and group averages, to networks. Contextual effects for the entire network are summarized by the sociomatrix \(C \). The matrices \(C \) are non-negative and each row sums to 1. The literature on social interactions presents two kinds of contextual variables: group averages of individual level variables, and distinct group variables. In a study of peer effects on educational outcome, for instance, classroom specific average family income and teacher-specific variables are examples of the first and second type, respectively. It has been known since Brock and Durlauf (2001a,b) that the relationships between these variables determine whether identification holds. In particular, they show in a related model that the presence of one individual variable whose group average is not a contextual variable is sufficient for identification. Since they raise no new issues here, we omit group variables which are not averages of individual variables.

The social component captures the idea that deviating from the average behavior of one’s peers is costly. This is the source of so-called peer, or endogenous, effects. The weights \(a_{ij} \) extend uniform group averages, which underlie social interactions models to more general social networks, and different weighting schemes. Hence, we assume \(a_{ij} \geq 0 \) and that the rows of \(A \) sum to 1. Whereas the empirical literature uses simple group averages as a model of peer effects, the motivation for peer effects is that they measure social influence. Thus the peer-effects network should not have self-loops. Accordingly, we assume that the \(a_{ii} \)'s are 0. This difference is pertinent for the identification of utility parameters in the linear-in-means model.

In the existing econometric literature, the same sociomatrix is used to average endogenous and exogenous variables. Here we consider other schemes. To see

\footnote{Sociomatrix is a term from sociology. In the mathematics literature these objects are called \textit{weighted adjacency matrices}.}
why this is plausible, consider again peer effects on educational outcomes. Suppose that peer effects really are from peers. In this case, the sociomatrix averaging endogenous effects should measure friendships or social influence. On the other hand, variables such as average family income may work at the classroom or school level, measuring how much parents can subsidize the classroom. Models like this have two social networks: the peer effects network through which endogenous interactions are transmitted, and the contextual effects network, which determines the contextual effects, each represented by its sociomatrix, A and C, respectively. Notice that individuals need not know the entire networks. They need only to whom they are connected, and the weights assigned to them. In this sense, each individual has a payoff-relevant neighborhood.

Since we are working in an environment with private types, we need to make some assumptions on unobserved and observed individual-specific heterogeneity. In the following definition, \(x \) is a \(|V|P\)-dimensional vector in which for each \(i \) the observations \(x_i \) are stacked variable by variable, with the individual-specific vectors so created stacked as well. Our assumptions are summarized in the following four axioms.

Axiom 1. \(\phi \geq 0 \), \(A \) and \(C \) are non-negative, their row sums are 1, and for all \(i \), \(a_{ii} = 0 \).

Axiom 2. Second moments of the marginal distribution \(\rho^\epsilon \) exist.

Axiom 3. Second moments of the marginal distribution \(\rho^\nu \) exist.

Axiom 4. For all \(i \), \(E \{ \epsilon_i | x, \nu, \epsilon_{-i} \} = \mu_0^\epsilon \) is independent of \(x \) and \(\epsilon_{-i} \).

Axiom 1 restricts the payoff function. The second and third axioms guarantee that the choice problems required of individuals by the game are well-posed, that the necessary expectations exist. The joint distribution \(\rho \) on \(x, \nu \) and \(\epsilon \) is the common prior belief on the space of types. If axiom 4 were false, the equilibrium strategies need not be linear in \(x \).

A strategy for individual \(i \) is a function that assigns an action to each of his possible types; a function \(f_i : R^{|V|(P+1)+1} \rightarrow R \). A Bayes-Nash equilibrium (BNE) of the game is a strategy profile \((f_i)_{i \in V} \) such that each \(f_i \) maximizes

8For an example that does not fit into our framework, see Calvó-Armengol, Patacchini, and Zenou (2009).
\[E \{ u_i(\omega_i, \omega_{-i}) \} \] where the expectation is taken with respect to the strategies \(f_{-i} \) and the common prior \(\rho \).

Theorem 1. Assume the sociomatrices satisfy axiom 1. For any prior distribution \(\rho \) satisfying axioms 2 through 4, there exists a unique BNE. The equilibrium strategy profile can be written in the form

\[
(f^*_i(x, v, \varepsilon_i))_{i=1}^{V_i} = \frac{1}{1 + \phi} \left(I - \frac{\phi}{1 + \phi} A \right)^{-1}
\cdot \left(\mu^e + v + \sum_p (\gamma^p I + \delta^p C) x^p \right) + \frac{1}{1 + \phi} \varepsilon_i^{dev} \tag{2}
\]

where \(\varepsilon_i^{dev} = \varepsilon_i - \mu_i^e \).

Notice that the strategy profile has distinct roles for \(\mu_i^e \) and \(\varepsilon_i^{dev} \), since only the former is common knowledge.

The equilibrium strategies map types into actions; that is, strategies describe a map \(f : (x, v, \varepsilon) \mapsto \omega \). This is what the empirical literature calls a reduced form. This is, in fact, the structural model for a game theorist insofar as what one means by a structural model is a model delivered from theoretical considerations. In the social networks and social interactions literature, what are called structural models are equations in which individual choices are determined by the individual choices (or expected choices) and characteristics of others as well as the characteristics of individuals. At best, these may be first-order conditions. For our model, for example, the first order conditions for utility maximization are, for all \(i \),

\[
\omega_i = \sum_{p=1}^P \frac{\gamma^p}{1 + \phi} x_i^p + \frac{\delta}{1 + \phi} \sum_{p=1}^P \sum_j c_{ij}x_j^p + \frac{\phi}{1 + \phi} \mathbb{E} \left\{ \sum_j a_{ij}\omega_j | t_i \right\} + \frac{v_i + \varepsilon_i}{1 + \phi}. \tag{3}
\]

which are necessary conditions for maximization satisfied by the equilibrium strategies. Since the empiricist typically transforms these first-order conditions in order to eliminate direct dependence on the choices (or beliefs), he refers to equation (3) as the structural model for \(i \), and equation (2) as the reduced form for the system.
Regardless of the different perspectives, an interesting econometric exercise is to determine the parameters that describe the utility function and the network, for a variety of purposes, including the exploration of positive and normative effects of policies. To avoid confusion, we will refer to the right hand side of equation (2) neither as the structural model (which it is) or a reduced form (which it is often called, but is not), but instead as the strategy profile of the network. We will abuse this term slightly, because we will also use the term strategy profile to refer to the matrix \(B = (B_1, \ldots, B_P) \) in which each matrix \(B_p \) acts on the characteristics \(x^p \) and is given by the function \(B = (B_1, \ldots, B_P) \) defined as follows:

\[
B_p(\gamma, \delta, \phi, C, A) = \frac{1}{1 + \phi} \left(I - \frac{\phi}{1 + \phi} A \right)^{-1} (\gamma^p I + \delta^p C).
\]

Notice that axiom 1 implies that the matrix inverse on the right hand side exists for all \(\phi \geq 0 \). From equation (2) it can be seen that the matrix \(B \) essentially characterize the equilibrium strategies, and our identification exercises largely involve determining what parameters can be recovered from them. If the span of an \(x^p \) has dimension less than \(|V| \), then \(B_p \) will be unique only up to its action on a lower-dimensional subspace. But this is an issue of identification (which will arise in section 6), and not one of existence or uniqueness.

ii. social interactions models as special cases of the general linear social networks model

The social interactions literature has focused on the special case where individuals react to the average of others in a predefined group \(g \). Notationally, \(g \) denotes a collection of indices corresponding to population members. Social interactions model assume that each member of a group is affected by the average behavior of others in the group and is unaffected by individuals who are not members of the group. Following Blume et al. (2011), the microfounded quadratic social
interactions model is a special case of our social networks model such that9

\[
c_{ij} = \frac{1}{n_g} \quad \text{if } i, j \in g;
\]

\[
a_{ij} = \frac{1}{n_g - 1} \quad \text{if } i, j \in g, i \neq j;
\]

\[
c_{ij} = a_{ij} = 0 \quad \text{otherwise.}
\]

where \(n \) is the size of group \(g \). Under these restrictions, the first order condition for an individual’s choice produces the first-order condition (interpreted as a structural equation in the literature)10

\[
\omega_i = \sum_p \frac{\gamma^p}{1 + \phi} x^p_i + \frac{\delta^p}{(1 + \phi)(n - 1)} \sum_{j \neq i} x^p_j
\]

\[
+ \sum_{j \neq i} \frac{\phi}{(1 + \phi)(n - 1)} \mathbb{E}\{\bar{\omega}_j | x\} + \frac{1}{1 + \phi} \epsilon_i \quad (6)
\]

When the population size is large, this expression becomes arbitrarily close to

\[
\omega_i = \sum_p \frac{\gamma^p}{1 + \phi} x^p_i + \frac{\delta^p}{(1 + \phi)} \sum_{j \neq i} x^p_j + \frac{\phi}{(1 + \phi)} \mathbb{E}\{\bar{\omega} | x\} + \frac{1}{1 + \phi} \epsilon_i \quad (7)
\]

where the barred variables are group averages. This last equation defines the linear-in-means model that has received so much attention in the econometric literature.

9Bramoullé, Djebbari and Fortin refer to the case where \(i \) is omitted from the averaging as exclusive averaging and associate with this with Moffitt (2001). They contrast this with inclusive averaging, in which \(i \)’s behavior is included when averaging, associating this assumption with Manski (1993). In our view, inclusive averaging does not make behavioral sense sense for endogenous effects. We believe that the correct interpretation of Manski, confirmed in conversation with him, is that his formulation was based on the assumption that the group size was large enough that own effects on averages could be ignored. In contrast, inclusive averaging can make behavioral sense when contextual effects derive from public goods, for example. Hence, (5) is the appropriate microfounded social interactions analog to the social networks model. We are unaware of any work in the social interactions literature that has allowed for exclusive and inclusive averaging to coexist in the same population.

10We omit \(\nu \) from this specification since this term does not appear in social interactions models.
3 Identification concepts

In this section we provide the assumptions we append to the theoretical model as we move from theoretical to econometric issues. We elucidate what we mean by identification, how identification results depend on an analyst's objective, and the relationship between identification notions and data moments.

i. basic ideas

Identification is concerned with the problem of making relevant distinctions between different parameter values based on some observables and some a priori knowledge of the data-generating process. In order to do this, one must specify the following objects: The set of structures that could conceivably have generated the data; a statistic (for example, a sample moment), from which the econometrician will infer structure; a priori knowledge of the econometrician, which imposes restrictions on the set of conceivable structures which are made ex ante the observation; and finally, a description of the distinctions among the structures that the econometrician would like to draw. A structure \(m \) is a description of a data-generating process in terms of parameters, some of which are of interest to the econometrician. A model \(\mathcal{M} \) is the set of conceivable structures. Each structure \(m \in \mathcal{M} \) generates a probability distribution \(\Lambda(m) \) on the set of values of the statistic. A priori information is represented, as knowledge usually is, by an information partition — in this case, of the set \(\mathcal{M} \) of models.

The specification of a structure may be quite complicated, and the econometrician might be interested only in some part of the structure; parameters, for instance, that may be tuned by policy changes. The idea that we need to identify, and only identify, useful knowledge is as old as the notion of structural econometric models. Heckman (2000; 2005) has reminded us of the importance of this idea, which he calls Marschak's Maxim in acknowledgement of its earliest clear statement in Marschak (1953). Useful knowledge can also be represented by a partition, or equivalence relation, on the model \(\mathcal{M} \). Two structures are equivalent in the sense of Marschak if they differ only in ways that are not of interest to the econometrician. For example, in the model of section 2 with exogenously given networks, no conceivable statement about the positive or normative implications
of some policy experiment will involve anything more than means and variances of the common prior \(\rho \), so there is no point in trying to identify, say, the third moments of \(\rho \). One way in which Marschak equivalence arises is when one asks if particular parameters are identified. To investigate the identification of parameter \(p \) is (at least implicitly) to regard as equivalent structures which share a common value of parameter \(p \), regardless of how else they may differ.

Identification has to do with the inverse image of \(\Lambda \). Formally, if Marshak equivalence is represented by an equivalence relation \(\sim \) on the set \(M \) of models, and if \(S \) is the set of structures that are possible given the econometricians ex ante information, then identification is achieved if for any two different distributions \(q' \) and \(q'' \) of the statistic, if \(s' \) and \(s'' \) are structures in \(\Lambda^{-1}(q') \cap \Lambda^{-1}(q'') \cap S \), then \(s' \sim s'' \). Claims about identification are often confused with claims about inference; for example, that if a parameter is identified, then it can be consistently estimated. On the contrary, identification is concerned with claims about the population distribution of data rather than with the existence of statistics that with certain inferential properties.

We now apply these ideas to the linear social network model of section 2.

Definition 1. A structure is a list \(\langle (\gamma^p, \delta^p)_{p=1}^P, \phi, C, A, \mu^\epsilon, \mu^\nu, \rho \rangle \). A model is a set of structures satisfying axioms 1 through 4. Denote by \(M \) the set of structures with the following properties:

\(i. \) The span of \(x \) has dimension \(|V| P \).

\(ii. \) For all \(i \), \(E \{v_i | x\} \equiv \mu_0^\epsilon \), independent of \(x \) and \(i \).

\(iii. \) \(\mu_i^\epsilon \) is independent of \(i \).

\(iv. \) For all \(i \) and \(j \), \(a_{ij} > 0 \) iff \(a_{ji} > 0 \).

\(v. \) For all \(i \) and \(j \), there is a pair \(i \neq j \) with \(c_{ij} > 0 \), and \(c_{ij} > 0 \) iff \(c_{ji} > 0 \).

\(vi. \) One of \(\delta \) and \(\gamma \) is not 0.

These properties are further assumptions in the theoretical model that address estimation issues rather than the existence and uniqueness of equilibrium. Recall that we have already assumed that \(\mu^\epsilon \) is independent of \(x \), and that the \(a_{ii} \) are 0. Condition \(i \) ensures that \(B \) is unique, that the relevant space on which
strategies are defined is full-dimensional. Conditions \(ii\) and \(iii\) shrink the size of the parameter space considerably, and are likely consequences of assumptions such as exchangeability that may be employed in any event. Conditions \(iv\) and \(v\) of the definition impose the restriction that the location of 0’s in the sociomatrices is symmetric in a weak sense. That is, \(i\) influences \(j\) if and only if \(j\) influences \(i\). This is done for technical convenience. Notice that the influence weights can be quite different, so disallowing one-way influence rules out only boundary cases. We rule out the identity matrix. The purpose of condition \(vi\) is to rule out a degenerate case: If \(\delta = \gamma = 0\), then \(\omega_i\) is determined only by \(\varepsilon\), and in this case \(\phi\) cannot be identified without further assumptions on the (joint) distribution of the private types.

A priori information in this paper will mostly have to do with parameter values. Section 4 is concerned with identification when both sociomatrices \(A\) and \(C\) are known a priori. Section 5 investigates the degree to which this assumption can be relaxed. In neither case is a priori knowledge of the common prior \(\rho\) necessary for identification. When network formation is endogenous this is no longer the case. At different points we will assume that first moments of \(\rho\), conditional moments of \(\rho\), and \(\rho\) itself are all a priori knowledge. One use of a priori knowledge assumptions to describe particular parameter restrictions. For instance, in some of our theorems it is known a priori that \(\delta = 0\) (no contextual effects).

We will also be interested in generic identification. This too can be expressed in terms of a priori knowledge.

Definition 2. The parameter \(p\) in model \(M\) is generically identified from the joint distribution of \(\omega\) and \(x\) iff there is a closed and lower-dimensional set \(M^{crit}\) such that if the complement of \(M^{crit}\) is known a priori, then \(p\) is identified.

The proofs identify how this set can be computed in any given instance, but we will not report on the description of the so-called “critical set” of models where identification may fail.

Useful knowledge in this paper will be concerned with identifying which parameters or functions of parameters are identified. For instance, it is usually the case that \(\gamma + \delta\) is identified. By this we mean that if two models differ in this sum, they can be distinguished by the distribution of some observable.
In the next section and in the remainder of the paper, we will incur no loss of generality and gain greater clarity by taking $P = 1$, that is, from assuming there is only one exogenous variable.

ii. Sample moments and identification

Given the axioms in section 2 and the requirements imposed on a model, the conditional distribution of ω given x is described by an equation of the form

$$\omega = \mu^\epsilon + \mu^\nu + B(m)x + \nu^{\text{dev}} + \epsilon^{\text{dev}}.$$ (8)

In this way the parameters $\mu^\epsilon + \mu^\nu$, γ, δ, ϕ, A and C, and the distribution of ν^{dev} and ϵ^{dev}, the deviations of ν and ϵ from their means, completely determine the conditional distribution of ω given x; this and the marginal distribution of x determines the distribution of the pair (x, ω). The identification question is to recover these parameters from a given joint distribution of ω and x.

One can immediately make a couple of observations. First, given a joint distribution, the matrix B can be recovered. Then the difference $E\{\omega|x\} - Bx$ identifies the sum $\mu^\epsilon + \mu^\nu$, and this is the best that can be done — these parameters cannot be separated. Another observation comes from equation (4). Since the row sums of A are all 1, so are the row sums of $(1 + \phi)^{-1}(I - \phi(1 + \phi)^{-1}A)^{-1}$. Since the row sums of C are 1, it follows that the row sums of any $B \in B(m)$, the row sums of B are $\gamma + \delta$.

Lemma 1. The sum $\gamma + \delta$ and the sum $\mu^\epsilon + \mu^\nu$ are identified in \mathcal{M} from the joint distribution of ω and x without any additional a priori information.

While B is always observable from individual data, it may not be observable from aggregate data. We discuss this in section 3.4.

Most often, equation (8) is estimated with a regression model; that is, $E\{\omega|x\}$ is the object of statistical enquiry, and identification strategies would have to do with the recovery of the parameters from from this conditional mean. However, there are other approaches. The fact that complementary network connections create correlation between actors resulting in excess variation is an old observation in network science (e.g. Ising (1925) and Dobrushin (1965)). It was first
exploited in econometric models by Glaeser, Sacerdote and Scheinkman (1996, 2003) and subsequently by Graham (2008) and others. It is occasionally alleged that investigation of \(\mathbb{E}\{\omega^2|x\} \) creates new opportunities for identification. In the linear-in-means model, this is not the case. To see this, observe that any information to be gleaned from variance is embedded in the covariance matrix for \(\omega \). Assume that \(x, \nu \) and \(\epsilon \) have second moments that are independent of one another. Then

\[
\text{Var}\{\omega|x\} = \text{Var}\{B(m)\nu\} + 2 \text{Cov}\{B(m)\nu, \epsilon\} + \text{Var}\{\epsilon\}.
\]

The parameters of interest are all embedded in \(B(m) \); identification is still connected with the inverse image of the \(B(\cdot) \) map.

This is a piece of a more general principle. All the information to be had about the parameters of the model is that which can be recovered from \(B(m) \). All results in sections 4 and 5 are proven simply by examining the map \(B \).

Graham’s (2008) variance contrast method demonstrates this point. Our definition of a model excludes the case \(\delta = \gamma = 0 \), but variance contrast in fact extends our results to cover this case as well. The matrix \((I - (\phi/(1 + \phi))A)^{-1}\) has full rank, and the support of the marginal distribution \(\rho^x \) on \(x \) has full dimension \(|V|\), so \(\mathbb{E}\{\omega|x\} \) will be independent of \(x \) only when \(\gamma I + \delta C \) has rank 0, which by assumption can happen only when \(\delta = \gamma = 0 \). It now follows from the argument in the proof of theorem 5 below that \(\phi \) and \(A \) can be identified, and of course \(\mathbb{E}\{\omega\} = \mu^\nu + \mu^\epsilon \). Graham’s model describes a special case in which \(B = B(m) \) can be recovered from \(\text{Var}\{\omega\} \).

Aside from this case, however, variance and higher-moment methods add nothing to the possibilities for identification requires the existence of a variable that \(B(m) \) acts upon and which the econometrician does not observe. Otherwise the econometrician is left with \(\text{Var}\{\epsilon\} \) which reveals little of interest. Graham (2005) develops a theoretical model where this situation arises. There are no observable characteristics, but the game network members play is presumed to be a complete-information game; that is, \(\epsilon \equiv 0 \). The only shocks are the \(\nu \), observable to the participants, but not to the econometrician.
4 Identification with known sociomatrices

In this section we consider identification when both A and C are both known a priori. The goal here is to study the traditional reflection problem, that is, identification in the presence of contextual effects. If $A = C$, the analysis is a trivial extension of Blume et al. (2011). The discussion of aggregation is new.

i. identification with individual-level data

Recall that the sums of the means of the two unobserved variables are identified in this and all subsequent models. This is a trivial point in light of the fact that the sum of the means of the unobservables is nothing more than the constant term in the individuals’ strategies.

The following lemma is useful for checking identification when the peer- and contextual-effects network stand in particular relationships to each other.

Lemma 2. If A and C are a priori knowledge, if $B(m') = B(m'') = B$, and if there is a pair $i \neq j$ such that $c_{ij} = 0$ and $b_{ij} \neq 0$, then $(\gamma', \delta', \phi') \neq (\gamma'', \delta'', \phi'')$.

Here is one example of how this lemma can be employed. Condition i of definition 1 is not sufficient to claim that B is uniquely determined in equilibrium. We will need to guarantee that a particular element of B is not zero. This condition is satisfied for generic (δ, γ) pairs.

Theorem 2. Suppose that the following facts are known a priori:

i. A and C;

ii. the peer-effects network is connected;

iii. there is no individual j such that $c_{kj} = 0$ for all k;

iv. there is some pair i, j such that $c_{ij} = 0$.

Then γ, δ and ϕ are generically identified from the joint distribution of ω and x.
There are many ways of extending this theorem to multiple peer effects cliques, especially if the peer- and contextual-effects cliques are not nested. In particular, individuals who influence a peer-effects clique through a contextual effect but are not themselves part of the clique identify peer effects in a manner analogous to the Brock and Durlauf (2001b) condition for identification, which requires the existence of an individual variable whose group average is not a contextual variable. This requires some structure on the contextual effects network. The network is already assumed to be bidirectional, that is, has a contextual effect on j if j has a contextual effect on i. We will assume in addition that the contextual effects network is transitive: If i is affected by j, and j is affected by k, then i is directly affected by k. Formally, if $c_{ij} > 0$ and $c_{jk} > 0$, then $c_{ik} > 0$.

Theorem 3. Suppose that the following facts are known a priori:

1. A and C;
2. the contextual effects network is transitive;
3. there are components V_1^C and V_2^C of the contextual-effects network and component V^A of the peer-effects network such that each $V_i^C \cap V^A \neq \emptyset$.

Then γ, δ and ϕ are identified from the joint distribution of ω and x.

Bramoullé, Djebbari, and Fortin (2009) provide a powerful identification requirement for the traditional linear-in-means model that provides a connection between identification and network structure. The next result extends this to our two-sociomatrix model.

Lemma 3. Suppose that A and C are known a priori.

1. Suppose it is known a priori that $A \neq C$ and $AC \neq A, C$. The matrices I, A, C and AC are linearly independent if and only if γ, δ and ϕ are identified from the joint distribution of ω and x.
2. Suppose it is known a priori that $A \neq C$, that $AC = C$, and that the matrices I, A and C are linearly independent. Then γ, δ and ϕ are identified from the joint distribution of ω and x.

11A clique in which all individuals are connected, i.e. all off-diagonal elements of the sociomatrix are positive.
iii. Suppose it is known a priori that $A = C$ and that $\gamma + \delta \neq 0$. Then a priori knowledge that I, A and A^2 are independent is necessary and sufficient for γ, δ and ϕ to be identified from the joint distribution of ω and x.

The condition that $\delta + \gamma \neq 0$ ensures that peer and contextual effects do not cancel each other out.

It can be shown that the set of pairs of sociomatrices failing to satisfy the independence condition lemma 3.1 is closed and lower-dimensional in the space of all sociomatrices satisfying our requirements. Dependence is the existence of a non-zero solution in α, β, γ and δ of the following equation system:

$$
\alpha + \beta c_{ii} + \delta \sum_l a_{il} c_{li} = 0 \quad \text{for all } i,
$$

$$
\beta c_{ij} + \gamma a_{ij} + \delta \sum_l a_{il} c_{lj} = 0 \quad \text{for all } i \neq j.
$$

Various cases of this system can be used to generate any number of conditions guaranteeing identification of M when A and C are known a priori. Here is one such instance, in which the separation of peer and contextual effects exposes yet another way in which the reflection problem is fragile.

Corollary 1. Suppose A and C are known a priori, and also that the context-effects network is a clique and in it all weights are equal, and that there exists two pairs of individuals $i \neq j$ and $k \neq l$ such that $a_{ij} \neq a_{kl}$. Then γ, δ and ϕ are identified from the joint distribution of ω and x.

ii. aggregation

Classroom-level and village-level data often come aggregated. For example, an education data set may contain observation on mean outcome and mean characteristics of many classrooms. What can be learned from this? The answer is, not very much. In general, with only mean characteristics and mean outcome data, identification will be complicated by the fact that there is no direct relationship between mean characteristics and mean outcome. A special case where there is such a relationship arises when the sociomatrices are bistochastic; that is, column sums as well as row sums all equal one. Although this is a very restrictive
condition, it includes the important case of equal-weighted averages of all other individuals. This is the case which Graham (2008) uses to show how ϕ may be recovered from the variance in mean group outcomes, if one can calculate this variance for different-sized groups.

Suppose there are N observational units, such as villages or classrooms, and unit n has member set V^n. We suppose that if individual i is in unit m and individual j is in unit $n \neq m$, then $a_{ij} = c_{ij} = 0$; the units are not connected to each other in either the peer- or contextual-effects social network. Observational units are identified with superscripts. The n'th observational unit has peer- and contextual-effects matrices A^n and C^n, respectively. (Note that N may equal 1.) Let e^n denote the row vector in which each element is $1/|V^n|$, where $|V_n|$ is the number of individuals in observational unit n. Observational units are identified with superscripts. The econometrician observes the averages $(e_n \cdot x^n, e_n \cdot \omega^n)_{n=1}^N$.

a. bistochastic sociomatrices

As observed above, a non-negative matrix is bistochastic if its row sums and column sums are both 1. One such matrix is the sociomatrix wherein each individual equally weights all other individuals. More generally, if the network is regular12, the weighted adjacency matrix that assigns equal weights to all individuals whose weights are non-zero will be bistochastic. Inverses and products of bistochastic matrices are themselves bistochastic, and in particular, $(1 + \phi)^{-1} (I - \phi (1 + \phi) A^n)^{-1}$ is bistochastic. Let bars represent group averages. The average outcome in group n, is

$$\bar{\omega}^n = e^n \mu_e + e^n \cdot \frac{1}{1 + \phi} \left(I - \frac{\phi}{1 + \phi} A^n \right)^{-1} (\gamma x^n + \delta C^n x^n + v) + \frac{1}{1 + \phi} e^n \cdot \epsilon^{dev}$$

$$= \mu_0^e + v + (\gamma + \delta) x^n + \frac{1}{1 + \phi} \epsilon^{dev}.$$

where ϵ^{dev} is the deviation of ϵ from its mean. The obvious result is that only the sums $\mu_0^e + \mu_0^e$ and $\gamma + \delta$ are identified.

12All nodes have the same degree.
Theorem 4. If only A and C are known a priori, then $\gamma + \delta$ and $\mu_0 + \mu_0'$ are identified from the joint distribution of groups average choice and average characteristics. No other parameters are identified.

We saw in section 3.2 that these parameter sums are identified with individual observations, but this result is not generally true for models when only aggregate data is observed.

b. exchangeable individuals

The analysis of identification from aggregate data for more general classes of social networks requires assumptions on the relationship between characteristic means and the distribution of characteristics among the population. Suppose that the distribution of characteristics has the following property:

Property P. $E\{x^n|e^n \cdot x^n = z\} = (z, \ldots, z)$.

Property P says that the conditional mean characteristic of each group member given the group sample mean equals the group sample mean. This property follows if the x_i are exchangeable, among other hypotheses. The consequence of property P is the following: $E\{\omega|x\}$ can reveal some information, but it does not reveal $B(m)$. This may be seen in the calculation

$$E\{\omega|x\} = \mu^v + \mu^e + \frac{1}{1 + \phi} \left(I - \frac{\phi}{1 + \phi} A^n \right)^{-1}.$$

$$(\gamma I + \delta C^n) \begin{pmatrix} E\{x_1|x\} \\ \vdots \\ E\{x_{|V|}|x\} \end{pmatrix} + \begin{pmatrix} E\{\nu_{1}^{dev}|x\} \\ \vdots \\ E\{\nu_{|V|}^{dev}|x\} \end{pmatrix} = (\mu^v + \mu^e) + (\gamma + \delta)\bar{x}.$$

When Property P holds, the identification result is the same as that in the bistochastic case. Only the parameter sums $(\mu^v + \mu^e)$ and $(\gamma + \delta)$ are identified, and nothing more can be said. Notice, however, that whereas in the bistochastic case, the value of the random variable ω is independent of γ, δ and ϕ, here it is a...
conditional moment that fails to vary with parameters. This leaves open the possibility that other statistics may reveal the parameters. We have conducted some computation with variances and discovered that sometimes ϕ can be identified from the conditional variance, and sometimes not. Clearly there is more work to be done here.

5 Identification with unknown social networks

i. Unknown peer-effects sociomatrices

In this section we consider submodels wherein the contextual effects sociomatrix is \textit{a priori} knowledge but the peer-effects sociomatrix is unknown to the econometrician. Although it may seem surprising that one can identify the peer-effects sociomatrix conditional on knowledge of the contextual-effects sociomatrix, a moment’s reflection shows why it is plausible. The dimension of the set of peer-effects matrices is $|V|(|V| - 2)$. For a fixed contextual effects sociomatrix C^*, the dimension of the set $B\left(\{m : C = C^*\}\right)$ is no more than $|V|(|V| - 1) + 1$, but we can show it to be no less than $|V|(|V| - 2)$. We need to recover $|V|(|V| - 2) + 3$ parameters from $B(m)$. It is certainly plausible that a necessary order condition is satisfied. We are searching for sufficiency, however, and we will proceed by direct argument rather than by trying to pin down more carefully the structure of $B(M)$.

a. Identification without contextual effects

It is common in the theoretical econometrics literature to assume that the peer effect network is known, and in the empirical literature to pretend that it is. This is rarely the case, however, so it is important to see how far one can go without such knowledge. The first result concerns identification when it is known \textit{a priori} that $\delta = 0$; that there are no contextual effects. Our results differ from Drton, Foygel, and Sullivant (2011) because their analysis ignores individual and contextual influences on individual behavior which are at the heart of our analysis, because of our interest in generic as well as global identification, and because
of the error structure we allow and the parameter constraints we impose as a consequence of the derivation of our behavioral equations from the Bayes-Nash equilibria we have described.\footnote{Drton, Foygel, and Sullivant's interest in global rather than generic identification stems, among other reasons, from a concern about the properties of likelihood ratio statistics when a particular class of models is tested against a broader class. As far as we can tell, this is not an issue that naturally arises in economic contexts.}

Some empirical work in labor, public finance and health economists has been concerned with distinguishing peer and contextual effects. As we discussed in section 2, there are many natural economic problems, however, for which contextual effects create no identification problem. Amazon's book pricing problem concerns networks. Are patterns of book demand due to homophily or a network effect? Price is a contextual variable, but since it is not an average of customers' characteristics, it creates no identification problems.

Theorem 5. If the econometrician knows a priori that $\delta = 0$, then the parameter γ is identified from the joint distribution of outcomes and characteristics. If $\gamma \neq 0$, then ϕ and A are identified.

When $\gamma = 0$, all variation in outcomes is due to variation in the unobservable variables ν_i and ε_i. Were further assumptions, such as independence, made on these terms, the matrix A and parameter ρ could perhaps be discerned.

This theorem claims that the utility parameter ϕ governing the strength of the social interaction is identified when the peer-effects matrix is not known. Moreover, the peer-effects matrix itself is, in principle, recoverable from the data. This result is surprising to us, and the rest of this section will be concerned with how far this result can be pushed.

b. Identification with contextual effects

When contextual effects are present and the contextual-effects sociomatrix is known, it will turn out that parameter values are generically identified, and even when they are not, ϕ is identified. We will assume it to be known a priori that $\gamma I + \delta C$ is invertible. For a given C, the set of (γ, δ) pairs for which invertibility fails is the union of a finite set of one-dimensional spaces.
Theorem 6. If the sociomatrix C, and also that $\gamma I + \delta C$ has full rank, are known a priori, then $\delta + \gamma$ and ϕ are identified from the joint distribution of outcomes and characteristics. There is a set \mathcal{C} of matrices whose complement in the set of all contextual-effects sociomatrices is closed and lower-dimensional, such that if $C \in \mathcal{C}$, then γ, δ and ϕ are identified from the joint distribution of observations and characteristics.

It will be clear from the proof of this theorem that if δ and γ cannot be distinguished, the peer-effects network cannot be identified. Nonetheless, and this is the surprising feature of theorem 6, the intensity ϕ of the peer effect can still be measured.

It is worth noting that exclusion restrictions on A can create additional identification opportunities because it provides more equations with which to tie down δ. In large social networks where each individual is connected to a small number of neighbors, a priori knowledge of the location of some of A's zeros quickly leads to an over-identified system.

ii. identification with unknown peer- and contextual-effects sociomatrices

It should be clear that if both A and C are unknown to the econometrician, nothing is identified. In this case there are $|V|(2|V| - 3) + 3$ parameters to identify, and the dimension of $\mathcal{B}(\mathcal{M})$ is at most $|V|(|V| - 1)$. In this case, one faces the classic simultaneous equations identification problem (Fisher, 1966; Hsiao, 1983). The conditions under which such systems are identified have long been well-understood. Blume et al. (2011) give examples of linear and nonlinear coefficient restrictions that produce variants of identification. When the sociomatrices are sparse, as would occur in large networks wherein each individual has only a small number of connections, the resulting necessary and sufficient rank and order exclusion condition are likely to be easily met.

This last observation emphasizes the importance of survey data in identification of social network models when the analyst does not possess a priori knowledge of the network structure. It also indicates important limitations to current surveys. The AddHealth data set is arguably the most popular data set for the study
of social network effects as it consists of a nationally representative sample of high school students who are interviewed about their friends, among many other characteristics. Unfortunately, the data set's friendship questions are restricted in that each student is allowed to name up to 5 friends of each gender. Exclusion restrictions imply that it is more useful to know who is not someone's friend rather than who is. In other words, the AddHeath friendship questions, because they do not provide measures of friendship intensity, are best understood as distinguishing zero and nonzero elements in the sociommatrices for school populations. However, the restriction on the number of friends means that the failure to identify someone as a friend does not mean that there is a corresponding zero in the associated sociommatrices. While the limitation on the number of friends that could be named in the interviews has long been understood as inducing measurement error in network structure, as far as we know, the effects of this limitation on identification per se have not been recognized.\footnote{Another concern is that the failure to identify someone as a friend is consistent with a negative entry in one or both of the sociommatrices we have employed. While we ruled this possibility out in our analysis, it obviously a possibility. We thank Jesee Naidoo for this observation.}

One might hope that, as is the case with unknown peer-effects, the magnitude of the peer effect might be distinguished. However, this is not the case.

\textbf{Theorem 7}. \textit{Without a priori information, }$\gamma + \delta$\textit{ is identified from the joint distribution of actions and characteristics. The peer-effects parameter }ϕ\textit{ is not identified.}

\section{6 Endogenous network formation}

The endogenous creation of peer networks adds another layer of strategic complexity to the game of section 2 and introduces a species of self-selection with all its attendant econometric issues. One of Heckman's seminal contributions to economics is the recognition that self-selection should not be treated as a nuisance, but rather as evidence that an additional behavior beyond the original one under study needs to be modeled. Here we explore the implications of endogenous network construction for the identification of utility parameters. In this section we will provide two results on parameter identification, differing in their hypotheses about \textit{a priori} knowledge. We then discuss contemporary econometric techniques, control functions in particular but also other instrumental variable
methods, within the context of these results. We describe how control functions may be useful for parameter estimation, and also point out some potential pitfalls in the choice of instruments for interactive decision problems like Bayesian games.

i. a group membership game

There is no one obvious network formation game to study, and so we will demonstrate the possibilities for selection in an extended example, a two-stage Bayesian game of group formation. Any strategic model of group formation must first ask, why do groups form? A distinguishing feature of social networks is the property of homophily, that similar individuals are attracted to one another. A large body of social science research (see McPherson et al. 2001) has documented that individuals in a social network are more likely to be directly connected to similar others. The urtext of sociological research on homophily, Lazarsfeld and Merton (1954), distinguishes two types of homophily, differing in their notions of individuals’ similarity: Status homophily is the tendency for individuals to associate with those carrying similar markers of social status, such as age, ethnicity, gender, race, and income. Value homophily is the tendency of individuals associate with those who share common beliefs and values, regardless of their social status. The model we present below attempts to measure both of these pressures for affiliation. We capture this by modifying the payoff function of section 2.

To make things concrete we will suppose that individuals can join one of two groups, a or b. (It may turn out that one group will be empty.) The strategic situation of section 2 is extended to two stages. In the first stage, individuals observe all public information about types, and then simultaneously choose to join group 1 or group 2, perhaps by walking to a particular location. At the second stage, individuals observe who is in their group, and then choose an action. The econometrician will observe the joint distribution of public characteristics, group composition and actions.
a. the game

The player set remains, as before, V, and type space remains the same as well, except that we will now dispense with ν, the characteristic observable by those in the network but not by the econometrician. An individual now has two choices in the game. In the first stage, the individual chooses a location, a or b. In the second stage he plays the game described in section 1 with everyone at his location, choosing ω_i as before. At the end of the first stage, a group of people has formed at each location. We associate to each possible group g the sociociomatrices A^g and C^g. These are given exogenously, and are known a priori by the individuals in V and by the econometrician. Since this is just an extended example, we will simplify the discussion by choosing a particular A^g and C^g. We will assume for contextual effects that x is averaged equally over all individuals in both groups. We will assume for peer effects that individual i averages equally over all individuals other than himself in his own group. Peer effects are group-specific but contextual effects are not. This is a case where we would expect all parameters to be identified were there no endogeneity problem. We will also assume that the status-homophily term, with coefficient β, weights according to A^g.

The payoff function for individual i in a group with member set $g \subset V$ depends only upon the characteristics and actions of members of g, and not on the location. The payoff function is\(^\text{15}\)

$$u_i(g, \omega_i, \omega_{g/\{i\}}, x_g) = \left(\gamma x_i + \delta \sum_{j \in g} c_{ij}^g x_j \right) + v_i + \varepsilon_i) \omega_i$$

$$- \frac{1}{2} \omega_i^2 - \frac{\phi}{2} \left(\omega_i - \sum_{j \in g/\{i\}} a_{ij}^g \omega_j \right)^2 - \beta \left(x_i - \sum_{j \in g/\{i\}} a_{ij}^g x_j \right)^2. \quad (10)$$

The payoff function is not yet completely specified, because it does not say what payoffs should be when i is in a group of one. We will assume that in this case, i's social payoff is what they would receive were they in the other group. In other words, one cannot be a group of one.

In this payoff function there are two sources of homophily. If β is large relative to ϕ, affiliation will be characteristic-based. This corresponds roughly with what

\(^{15}\text{For a given vector } z \in \mathbb{R}^{|V|} \text{ and group } g, z_g \text{ denotes the vector } (z_i)_{i \in g}.\)
is meant by status-homophily. If β is small relative to ϕ, affiliation will be outcome based. Individuals who desire to behave in similar ways will be more likely to group together — roughly speaking, value homophily. Value-homophily is the source of endogeneity problems. Fix a value of ϕ, and now perform the experiment of making β very large. For large enough β, group membership is almost entirely determined by the direct effect of the publicly observable characteristics. The conditional probability distribution of group formation given x converges to a point mass as β diverges. Imagine the limit: For all but a measure-0 set of x values, the participation conditions defining group participation hold strictly. This means that a given group is stable under small perturbations of x. This is enough to recover B, and identification proceeds as in previous sections. It is important to note that not all sources of endogeneity lead to identification issues.

The action stage of the game requires a strategy profile f^g for every possible group that could form. A strategy profile for the first stage is an assignment of each individual to a location, a map $\hat{\sigma}(x, \varepsilon_i) \mapsto \{a, b\}$. The assignment of individuals to locations maps each (x, ε) to a partition of V into two sets (one of which may be empty). We do not need to keep track of the locations, only the partition. Define $\sigma(x, \varepsilon)$ to be the map to partitions defined by $\hat{\sigma}$. For any partition $\{g, h\}$, the set $\sigma(x, \cdot)^{-1}\{g, h\}$ is a product set in $\mathbb{R}^{|V|}$ since each individual chooses a location seeing only his own ε_j. In the same manner, define σ_{-i} to be the induced partition on $V/\{i\}$, the partition of everyone other than i. Furthermore, given such a map σ, we can reverse the process and construct a strategy profile $\hat{\sigma}$ which would induce it. We will call the map σ an assignment, since it assigns individuals to groups.

The interim payoff to i for belonging to group g when all $j \in g/\{i\}$ choose according to the strategy profile f^g is

\[
V_{ig}(x, \varepsilon_i) = \sup_{\omega_i} \left(\gamma x_i + \delta \sum_{j \in g} c^g_{ij} x_j + \varepsilon_i \right) \omega_i - \frac{1}{2} \omega_i^2 - \frac{\phi}{2} \mathbb{E} \left\{ (\omega_i - \sum_{j \in g/\{i\}} a^g_{ij} f^g_j(x, \varepsilon_j))^2 \right\} \sigma_{-i}(x, \varepsilon_{-i}) = g/\{i\} \right. \\
- \frac{\beta}{|g| - 1} \sum_{j \in g/\{i\}} (x_i - x_j)^2
\] (11)
With interim payoffs in hand, we can define a perfect Bayes equilibrium of the two-stage game.

Definition 3. A profile \((\sigma, (f^g)_{g \in \mathcal{P}(V) / \emptyset})\) is a perfect Bayes equilibrium iff

i. Each \(f^g\) is a Bayes-Nash equilibrium of the second stage game for some conjectured \((\mu_i^g)_{i \in g}\).

ii. If \(g\) occurs with positive probability and \(i \in g\), \(\mu_i^g = E \{\varepsilon_i | \sigma(x, \varepsilon) = g\}\).

iii. For each \(x\) and \(g \in \mathcal{P}(V) / \emptyset\) containing \(i\), on the event \(\{\varepsilon : \sigma(x, \varepsilon) = \{g, V / g\}\) \(V_{i,g}(x, \varepsilon_i) \geq V_{i,V / g \cup \{i\} / g}(x, \varepsilon_i)\).

The first condition says that actual action choice in groups formed, and equilibrium conjectures for groups that do not form, are the Bayes-Nash equilibrium for that group for some conjectured assignment of individuals to groups. The second condition says that beliefs about the assignment have to be correct on the equilibrium path. The third condition is a participation constraint. It says that no individual wants to change groups given the second-stage conjectures about group choices. We shall be computing equilibria which are symmetric in that two individuals in the same choice situation, that is, the same \(x, \varepsilon_i\), contextual effect, and expected peer effect, will choose the same way.

We will not prove existence here, but we will provide some characterization.\(^{16}\) The characterization lemma states that if the unconditional (first-stage) expected value of the average choice of group \(g\) exceeds that of group \(V / g\), and individual \(i\) with a given private type prefers \(g\) to \(V / g\), then he will prefer \(g\) to \(V / g\) for all higher private types. That is, assignment rules in a perfect Bayes equilibrium have a threshold property.

Lemma 4. If \(\phi > 0\) and, for individual \(i\) in equilibrium,\(^{17}\)

\[
E \left\{ \sum_{j \in g} a_{ij} g_{ij} \omega_j \right\} > E \left\{ \sum_{j \in V / g} a_{ij} V / g_{ij} \omega_j \right\},
\]

\(^{16}\)In general it is hard to prove the existence of a perfect Bayes equilibrium for games with a continuum of types. It is relatively straightforward to prove existence when the type space is finite, and also when there is no heterogeneity in publicly observable types (or no public observable type).

\(^{17}\)If \(g = \{i\}\), the sum over \(j \in g\) is replaced by the sum over \(g^c\).
and if individual i with type ϵ_i weakly prefers g to h, then individual i with type $\epsilon'_i > \epsilon_i$ will strictly prefer g to h. If $\phi = 0$, individual i's group choice is determined solely by the direct homophily effect. He will join the group with characteristics most similar to his own. If $\beta = 0$ as well, then each individual is indifferent over group choice.

The consequence of this lemma is that for each g, the set of $\epsilon \in \mathbb{R}^{|V|}$ for which g forms is the product of intervals where each interval is either of the form $[\epsilon^g_i, \infty)$ or $(-\infty, \epsilon^g_i]$. The source of the selection problem is similar to that which arises in discrete choice models. Selection is determined by a threshold in the space of private types, this threshold will change as we change individuals’ observed characteristics, and so the mean of the private type of individual i conditional on being in group g will depend on the values of i's characteristics and the characteristics of the other group members.

b. identification

A structure for this game is a list with elements described in definition 4 below. We have already described the sociomatrices above. We have added the homophily parameter β, and we have dispensed with ν. The model \mathcal{M}' of this section maintains properties iii and vi of definition 1. The bad news of this section is that, so far, we have found no way to identify all the parameters of the model without assuming some a priori knowledge of ρ. The definition of structures and models for this section reflects all this:

Definition 4. A structure is a list $\langle \gamma, \delta, \phi, \beta, A, C, \mu^\epsilon, \rho \rangle$ satisfying the axioms 1 through 4. Denote by \mathcal{M}_{end} the set of structures satisfying the following additional properties:

i. ρ_X is finitely exchangeable.

ii. ρ_ϵ has a strictly positive density on $\mathbb{R}^{|V|}$.

iii. The ϵ_i are iid.

iv. For all g, $A^g_{ij} = 1/(|g| - 1)$ if i and $j \neq i$ are both in g, and 0 otherwise.

v. $c_{ij} = 1/(|V| - 1)$.
vi. One of γ and δ is not 0.

vii. One of ϕ and β is greater than 0.

An observation in this model is a triple $(\{g, V/g\}, x, \omega)$ where g and V/g are the two groups that form, x is the vector of characteristics of individuals in V, and ω is the vector of their actions. An observation is an equilibrium outcome.

We will assume that econometricians have access to all possible data. That is, econometricians see who is in which group, and what each individual chooses. In other words, the econometrician sees a particular equilibrium assignment of individuals to groups, and the subsequent second stage equilibria for the (no more than) two groups that formed. Thus the identification question concerns probability distributions on triples of the form $(\{g, V/g\}, x, \omega)$.

A difficulty in addressing identification in strategic models is that the equilibrium need not be unique. We will assume that the econometrician knows which equilibrium describes the data. The state of the art on partial identification for games with multiple equilibria has not yet reached games of the kind we consider here. The following theorem summarizes identification in \mathcal{M}_{end}.

Theorem 8.

i. If μ^x is known a priori by the econometrician, then γ, δ and ϕ are identified by the distribution of equilibrium outcomes.

ii. If the conditional means $E\{\varepsilon|x, g\}$ are either known a priori or identified by the distribution of equilibrium outcomes, and also known to be nonlinear, then γ, δ and ϕ are identified by the distribution of equilibrium outcomes.

iii. If ρ is known a priori and $\phi > 0$, then β is identified.

The difficulty with identification is recovering the matrix $B(m)$, where all parameters but β are hiding. When the network is exogenous, varying the x's a bit and seeing what happens uncovers the linear relation between x and ω, in other words, $B(m)$, and identification proceeds from there. When networks are endogenous, varying x changes the participation constraints. The conditional mean

It leaves out one case: If $\rho = 0$, then the most that can be said about β is whether it is 0 or positive, because in this case group assignment probabilities are independent of the (non-zero) magnitude of β.

of the ε_i given x in each group move with x. Perturbations in x perturb terms that are constants with exogenous networks, so picking out $B(m)$ becomes a non-trivial task. When the unconditional $\mathbb{E}\{\varepsilon\}$ is known, we bypass $B(m)$ and go directly for the parameter values. When the conditional means $\mathbb{E}\{\varepsilon|x, g\}$ are known a priori or can be estimated by other means, we can subtract off their contribution to ω and recover $B(m)$. Heckman’s work on self-selection provides one path into estimating $\mathbb{E}\{\varepsilon|x, g\}$ when they are in fact identified, although a comprehensive treatment is beyond the scope of this paper.

ii. Econometric approaches to identification with endogenous networks

Heckman’s early classic work Heckman (1979) on self-selection has evolved into the control function approach (e.g. Heckman and Robb (1985, Section 3.4)). Formally, we define a control function by the requirement that

$$s_i \propto \mathbb{E}\{\varepsilon_i|x, g\} \quad (12)$$

so that for some θ,

$$\varepsilon_i = \theta(x, g) + \zeta_i \quad (13)$$

where

$$\mathbb{E}\{\zeta_i|x, g\} = 0. \quad (14)$$

Equation (12) implies that when agent i forms expectations of ω_{-i}, this expectation will differ from the case when the network is exogenous as modeled in section 4. However, the information set on which the agent conditions is the same as in the original model. Hence the control function approach amounts to analyzing the equation

\[
\omega_i = \gamma \frac{1}{1+\phi} x_i + \delta \frac{1}{1+\phi} \sum_j c_{ij} x_j \\
+ \frac{\phi}{1+\phi} \mathbb{E} \left\{ \sum_j a_{ij} \omega_j | x, g \right\} + \pi s_i + \frac{1}{1+\phi} \zeta_i. \quad (15)
\]

\(^{19}\)See Navarro (2008) for a recent overview.
It is evident that the presence of s_i as a regressor in (13) converts the equation into one in which the regressors are orthogonal to the regression residual. Of course, it will be necessary for (12) to be nonlinear to avoid linear dependence on the other regressors in the equation. This is true outside of special cases for group formation. Note as well that the variables s_i are not associated with contextual effects in equation (15). Hence, when they are nonzero, it is the case that $E\{\omega_i|x,g\}$ is no longer linearly dependent on the set of x_g, which is the source of the reflection problem when the sociomatrices produce equations of the form (7). This is an example in which endogenous network formation produces identification when exogenous network formation would not; see Brock and Durlauf (2001b, 2006) for more discussion.

We have said nothing about how to construct the control function or whether they even exist. It is now understood that control function may not exist in certain contexts (Blundell and Matzkin (2010). Our goal is simply to establish how one could in principle use endogenous network formation to ensure identification of our general social networks model, so long as the control function approach can be implemented.

The idea that self-selection can facilitate identification of social effects via control functions was first shown in Brock and Durlauf (2001b); in this case the s_is turn out to be proportional to the Heckman λ's from Heckman's early work on correction for selection bias (Heckman, 1979). Brock and Durlauf (2006) provide a more general treatment when agents select into cliques and weights are required to be equal; for this environment the s_i's correspond to the generalization of the original Heckman selection correction proposed by Fei Lee (1983). These papers show that the set of social networks models for which one can construct control functions is not empty. Ioannides and Zabel's (2008) housing market study shows that there are contexts in which the control function approach can be empirically implemented. We leave the question of the generalization of the approach outlined here to general networks to future research. Our main message is that if the control approach is implementable, then subject to standard conditions on regressors, identification can be achieved for networks when it is endogenous.

This all said, control functions are not a panacea for network endogeneity, let alone unobservability of the network. Endogeneity has a particular source in social interaction models. Network formation and action on the network are the two
parts of a multistage game. Considerations from the underlying game suggest important limits on the way this procedure can be conducted. It is important that equation (14) not be interpretable as a behavioral equation without consideration of the first stage of the game. This is evident when one considers the critical role played by equation (12) in the analysis.

To see the import of this argument, suppose it is the case that there is additional information z that affected the choice of networks in the first stage of the game but has no effect on the payoffs associated with the choices ω_i. At first glance, one might believe that z represents a set of instruments available for overcoming endogeneity of the group choices, that they may be used to overcome the correlation of regression errors and regressors in an equation such as equation (3) when networks are endogenous.

One might even consider control functions of the form $s_i \propto E\{\epsilon_i| x, z\}$ as candidates for instruments, and go so far as to conclude that the $\phi a_{ij}^x/(1 + \phi)$ terms can be identified using these instruments, and so resolve the problem of an unobserved A matrix. However, such mechanical approaches would not be appropriate. The existence of z as a set of factors that determine group selection will affect the form of the second stage equation for choices within a network if they are available to the individuals in the network. In other words, equations (2) and (3) will not generally hold in the presence of z in the first stage and so (14) would be misspecified. Of course, if it were the case that the s vector constitutes data observable by individuals only after they have chosen their group, there is no problem. And finally, there is no reason in principle this could be data available to the econometrician but not the individuals in the network. In summary, a structural model of network formation is needed to provide guidance for the choice of appropriate instrument, guidance that would not be readily apparent were one to simply consider equation (3) in isolation.

7 Conclusion

In this paper, we have provided a theoretical and econometric characterization of linear social interactions models. These models are the workhorse of much of the current empirical research in social economics. Our analysis provides both a clear description of the behavioral assumptions needed to employ these models
as well as the conditions under which the primitive utility parameters that characterize individual and social influences may be recovered. The results indicate the importance of prior information on social network structure and highlight the importance of data collection as an integral part of efforts to identify economically interesting phenomena. At the same time, our analysis shows that identification is not only a function of what data are available, but of the features of the social networks themselves. As such, they illustrate a range of cases when identification will and will not hold. An important feature of our results is that we are able to specify how different aspects of socioeconomic environment can be identified, depending on the nature of a researcher's a priori information. Hence, we find that it is possible to identify the intensity of peer group effects even if the identities and averaging rule of an individual is unknown.

In terms of future research, we see two important directions. First, our analysis has explored the polar cases where the social networks that embed individuals are and are not observed. The question of identification in the presence of partial observability has yet to be systematically studied. We have referred to one form of partial observability, namely knowledge of the zeroes in the relevant sociomatrices, in our discussion of the Add Health data set. These work as exclusion restrictions from the vantage point of classical simultaneous equations theory, and as such can provide identification under partial observability. But one can, for example imagine distinct questions involving identification when only a subset of network members are observed. While this problem often arises, its implications for identification have yet to be assessed. Further, it would seem natural, when surveys can only obtain information from a subset of a population, that survey design should be constructed in order to facilitate identification. Second, our analysis has not addressed the question of what can be uncovered when a network is evolving. Our analysis has taken the network as fixed. However, the fact that different networks may or may not be identified suggests that networks may evolve through periods in which behavioral parameters are and are not identified. For stochastic network formation processes, this leads to the interesting question of the probability that the network passes through a period when identification is possible.

Further, while we have addressed the question of how our identification results are affected by network endogeneity, we have not addressed how this endogeneity can, when explicitly modeled, enhance identification. We have already shown how control functions can do this. But this only scratches the surface of how the
joint integration of endogenous network formation with behaviors in the presence of networks can be exploited for identification. For example, if network membership is associated with prices, then prices can help to uncover social effects, as demonstrated in recent advances in the econometrics of hedonic models (Eekeland, Heckman, and Nesheim, 2004; Nesheim, 2002). One of the major themes in James Heckman’s research is that endogeneity is not so much a nuisance to empirical work, but rather an additional behavior that needs to be modeled. So our last suggestion is nothing more but an acknowledgement of the importance of this particular Heckman insight to future social networks research.

8 Appendix

i. Proof of Theorem 1

\[E \{ u_i(\omega_i, \omega_{-i})|x, v, \epsilon_i \} = (\gamma x_i + \delta \sum_j c_{ij} x_j + v_i + \epsilon_i)\omega_i - \frac{1}{2} \omega_i^2 \]

\[- \frac{\phi}{2} E \left\{ \left(\sum_j a_{ij} \omega_j - \omega_i \right)^2 \right\} \]

Let \(\psi_i = \gamma x_i + \delta \sum_j c_{ij} x_j + v_i + \mu_i^e \), and let \(\epsilon_i^{dev} \) denote the deviation of \(\epsilon_i \) from its mean. The common knowledge assumption implies that the vector \(\mu_i^e \) is known to all network members, so it is only the deviation from the mean that is private. Rewriting,

\[E \left\{ u_i(\omega_i, \omega_{-i})|x, v, \epsilon_i^{dev} \right\} = (\psi_i + \epsilon_i^{dev})\omega_i - \frac{1}{2} \omega_i^2 - \frac{\phi}{2} E \left\{ \left(\sum_j a_{ij} \omega_j - \omega_i \right)^2 \right\} \]

The first-order conditions are

\[\psi_i + \epsilon_i^{dev} - \omega_i - \phi \left(\omega_i - \sum_j a_{ij} E \left\{ \omega_j|x, v, \epsilon_i^{dev} \right\} \right) = 0 \]
and so
\[
\omega_i = \frac{1}{1+\phi} \psi_i + \frac{\phi}{1+\phi} \sum_j a_{ij} E \{ \omega_j | x, v, \epsilon_i^{dev} \} + \frac{1}{1+\phi} \epsilon_i^{dev}.
\]

Expecting out the privately observed component,
\[
E \{ \omega_i | x, v \} = \frac{1}{1+\phi} \psi_i + \frac{\phi}{1+\phi} \sum_j a_{ij} E \{ \omega_j | x, v \}.
\]

Thus
\[
E \{ \omega | x, v \} = \frac{1}{1+\phi} \left(I - \frac{\phi}{1+\phi} A \right)^{-1} \psi
\]
which implies
\[
\omega = \frac{1}{1+\phi} \psi + \frac{\phi}{1+\phi} A \frac{1}{1+\phi} \left(I - \frac{\phi}{1+\phi} A \right)^{-1} \psi + \frac{1}{1+\phi} \epsilon^{dev}.
\]

With some algebra we see that
\[
\frac{1}{1+\phi} \psi + \frac{\phi}{1+\phi} A \frac{1}{1+\phi} \left(I - \frac{\phi}{1+\phi} A \right)^{-1} \psi = \frac{1}{1+\phi} \left(I + \frac{\phi}{1+\phi} A \left(I - \frac{\phi}{1+\phi} A \right)^{-1} \right) = \frac{1}{1+\phi} \left(I - \frac{\phi}{1+\phi} A \right)^{-1}.
\]

Rearranging terms gives the following expression for the set of choices:
\[
\omega = \frac{1}{1+\phi} \left(I - \frac{\phi}{1+\phi} A \right)^{-1} \psi + \frac{1}{1+\phi} \epsilon^{dev} = \frac{1}{1+\phi} \left(I - \frac{\phi}{1+\phi} A \right)^{-1} (\gamma I + \delta C)x + v + \mu e + \frac{1}{1+\phi} \epsilon^{dev},
\]
and so this is an equilibrium.
Uniqueness of equilibrium is proven by showing that the first-order conditions define a contraction map on the space of strategy profiles topologized with the product L_2 norm. This space is not empty, and if f is in this space, then $E \{ f_i(\psi, \epsilon_i) \} < \infty$. Define the operator

$$(Tf)_i(\psi, \epsilon_i) = \frac{1}{1 + \phi} (\psi + \epsilon_i) + \frac{\phi}{1 + \phi} E \{ a_i \cdot f(\psi, \epsilon) \}.$$

A fixed point of this map is a strategy profile that satisfies every individual’s first-order condition, and is hence a BNE. A straightforward computation shows that T operates on L_2-bounded functions, and is a contraction mapping. Thus its fixed point is unique.

\[\square\]

\section*{ii. Proof of Lemma 2}

From equation (4) and the hypothesis of the lemma it follows that

$$(1 + \phi)B - \phi AB = \gamma I + \delta C$$

for any $(\phi, \delta, \gamma) \in B^{-1}(B)$. Choose an (i, j) pair satisfying the hypothesis of the lemma. The right hand side of (16) is 0, and so

$$\frac{\phi}{1 + \phi} = \frac{b_{ij}}{[AB]_{ij}}.$$

(Note that the denominator on the right cannot be 0, or else from (16), $\phi = -1$ which is satisfied by no model in \mathcal{M}.) Thus if $B(m') = B(m'') = B$, then $\phi' = \phi''$. From property ii of the definition of \mathcal{M}, there is an (i, j) pair with $i \neq j$ such that $c_{ij} \neq 0$, and so from (16), $\delta' = \delta''$, and the equation for any diagonal pair implies that $\gamma' = \gamma''$. From these equalities it follows that $\mu') + \mu'' = \mu' + \mu''.$

\[\square\]
iii. Proof of theorem 2.

Suppose that $B(m') = B(m'') = B$. We can write

$$B = \frac{1}{1 + \phi'} \left(I - \frac{\phi'}{1 + \phi'} A \right)^{-1} \left(\gamma' I + \delta' C \right)$$

$$= \frac{1}{1 + \phi'} \left(I + \frac{\phi'}{1 + \phi'} A + \left(\frac{\phi'}{1 + \phi'} \right)^2 A^2 + \cdots \right) \left(\gamma' I + \delta' C \right).$$

Since the peer-effects network is connected, some power of A is strictly positive. Suppose that m' is such that $\phi' > 0$. Then $(1 - \phi')^{-1} \left(I - \phi' / (1 + \phi') A \right)^{-1} A^n C$ is strictly positive. Choose an i and j for which $c_{ij} = 0$. The set of all γ, δ pairs that can make $b_{ij} = 0$ is a 1-dimensional line in \mathbb{R}^2. If (γ'', δ'') is not on this line, then according to the lemma, $m'' = m'$. The set of (ϕ, γ, δ) triples for which $b_{ij} = 0$ is a closed, two-dimensional semi-algebraic set; the set of models in \mathcal{M} for given A and C with parameters outside this set is generic. Thus we have generic identification of ϕ, γ, δ for any $B = B(m)$ with $\phi > 0$. If $\phi' = 0$, then generically $\phi'' = 0$ (a consequence of the preceding argument). In this case it is straightforward to see that $\gamma' = \gamma''$ and $\delta = \delta''$. Finally, in either case, if everything else is equal, it follows that $\mu''' + \mu' = \mu'' + \mu''$. \hfill \Box

iv. Proof of theorem 3.

Choose i and j in $V_C^1 \cap V_A$ and $V_C^2 \cap V_A$, respectively. The matrix $1 / (1 + \phi) \left(I - \phi / (1 + \phi) A \right)^{-1}$ is block diagonal, with strictly positive blocks corresponding to the different components of A. Therefore

$$b_{ij} \geq 1 / (1 + \phi) \sum_{k \in V_C^2 \cap V_A} [\left(I - \phi / (1 + \phi) A \right)^{-1}]_{ik} c_{kj}. \tag{20}$$

Transitivity implies that the component V_C^2 is a clique — completely connected — and so this sum is positive. But $c_{ij} = 0$ by assumption (i is not in V_C^2). Thus the hypothesis of lemma 2 is satisfied. \hfill \Box

20 $X \gg 0$ means that every element of the matrix X is strictly positive.

21 See Bochnak, Coste, and Roy (1998) for a comprehensive overview of semi-algebraic sets.
v. Proof of lemma 3.

Identification holds iff for each matrix B, $B^{-1}(B)$ generically produces unique parameters. So suppose $B(m') = B(m'') = B$. Then

$$
\left(I - \frac{\phi'}{1 + \phi'} A \right)^{-1}(\gamma' I + \delta' C) = \left(I - \frac{\phi''}{1 + \phi''} A \right)^{-1}(\gamma'' I + \delta'' C),
$$

so

$$
\left(I - \frac{\phi''}{1 + \phi''} A \right)(\gamma' I + \delta' C) = \left(I - \frac{\phi'}{1 + \phi'} A \right)(\gamma'' I + \delta'' C)
$$

since the matrices commute, and so

$$
(\gamma' - \gamma'')(\gamma' - \gamma'') + \left(\frac{\phi'}{1 + \phi'} \gamma'' - \frac{\phi''}{1 + \phi''} \gamma' \right) A + \left(\frac{\phi'}{1 + \phi'} \delta'' - \frac{\phi''}{1 + \phi''} \delta' \right) AC = 0. \quad (17)
$$

We specialize equation (17) to the various cases.

1. If the matrices are linearly independent, then the coefficients of the four matrices must each be 0. Thus $\gamma' = \gamma''$ and $\delta' = \delta''$. One of γ' and δ' is not 0, so at least one of the last two terms implies that $\phi' = \phi''$.

Conversely, suppose that the matrices are linearly dependent, and suppose that

$$
a I + b C + c A + d AC = 0
$$

for a, b, c and d not all 0. We will construct two (in fact, many) models m' and m'' which give rise to the same B. For any ϕ, let $r = \phi/(1 + \phi)$. If two models m' and m'' cannot be distinguished, the following equations must be satisfied:

$$
\begin{align*}
\gamma'' &= \gamma' - a \\
\delta'' &= \delta' - b \\
c &= r' \gamma'' - r'' \gamma' \\
d &= r' \delta' - r'' \delta'.
\end{align*}
$$
Choose any \(r' \neq r'' \) in \([0,1)\). Substitute the first two equations into the second to get

\[
\begin{align*}
c &= (r' - r'')\gamma' - r'a \\
d &= (r' - r'')\delta' - r'b,
\end{align*}
\]

and so solving for \(\gamma' \) and \(\delta' \) and working backwards gives parameters \((\gamma', \delta', \phi') \) and \((\gamma'', \delta'', \phi'') \) for the two structures \(m' \) and \(m'' \). (We have the requirements that \(\gamma' \delta' = \gamma'' \delta'' \neq 0 \). This will clearly be satisfied for generic choices of \(r' \) and \(r'' \).) To complete the description, choose the same prior distribution \(\rho \) for both models satisfying the requirements of the axioms and conditions \(i - iii \) of the definition of \(M \).

2. Substitute \(C \) for \(AC \), regroup the terms of (17) and suppose again that \(\mathcal{B}(m') = \mathcal{B}(m'') = B \). If the matrices are independent, then \(\gamma' = \gamma'' \) without further assumptions. Since \(\gamma' \neq 0 \), independence implies that \(\phi' = \phi'' \). If \(\phi' \neq 0 \), then \(\delta' = \delta'' \) (since \(\phi'/(1+\phi'') < 1 \)). If \(\delta' = 0 \), \(\mathcal{B}(m') = \mathcal{B}(m'') \) implies that \(\gamma'I + \delta'C = \gamma''I + \delta''C \), and identification follows from definition \(1.v \).

3. The case \(A = C \) is proved in Bramoullé, Djebbari, and Fortin (2009).

vi. Proof of corollary 1

This is case 2 of lemma 3, \(AC = C \). The three matrices \(I, A \) and \(C \) are dependent iff \(V \) is a linear combination of \(I \) and \(C \). But any such linear combination has to have identical off-diagonal elements.

vii. Proof of theorem 5

Suppose \(E\{\omega|x;m'\} = E\{\omega|x;m''\} \) on some open subset of \(\mathbf{R} \). Then the strategy profiles for structures \(m \) and \(m' \) are described by the same matrix \(B \). Suppose too that \(\gamma \neq 0 \).

\[
\frac{\gamma}{1+\phi}(I - \frac{\phi}{1+\phi}A)^{-1} = \frac{\gamma'}{1+\phi'}(I - \frac{\phi'}{1+\phi'}A')^{-1}
\] \((18) \)
that is,
\[\frac{\gamma}{1 + \phi} \left(I - \frac{\phi'}{1 + \phi'} A' \right) = \frac{\gamma'}{1 + \phi'} \left(I - \frac{\phi}{1 + \phi} A \right). \]

Since the diagonal elements of A and A' are 0, it follows that
\[\frac{\gamma}{1 + \phi} = \frac{\gamma'}{1 + \phi'}. \]

Since γ is non-zero, the corresponding γ' cannot equal 0, and it follows that
\[I - \frac{\phi}{1 + \phi} A = I - \frac{\phi'}{1 + \phi'} A', \quad \text{that is,} \quad \frac{\phi}{1 + \phi} A = \frac{\phi'}{1 + \phi'} A'. \]

From the observation that the rows of both A and A' sum to 1, conclude that $\phi = \phi'$, and therefore $\gamma = \gamma'$ for all p, and $A' = A$. Finally from these facts it follows that $\mu^v + \mu^\epsilon$ is the same in both models. \(\square\)

Let $B = B(m)$ for a structure m consistent with the hypotheses of the theorem. It follows from equation (4) that B has constant row sums, which we will call b. A computation show that $b = \gamma + \delta$. Rewriting (4),
\[(1 + \phi) I - \phi A = (b - \delta) B^{-1} + \delta CB. \] (19)

Consider the right-hand side as a function of δ. Since A has 0s on the diagonal, it follows that there must be at least one value of δ for which all the diagonal elements of the matrix on the right are equal. Since the right-hand side is linear in δ, equality of the diagonal elements is true for either one δ or all δ. Choose any δ' for which the diagonal elements are equal. Then $\phi = 1 - [(b - \delta') B^{-1} + \delta CB]_{11}$, proving the first claim of the theorem. Next, it is easy to verify that for generic C, the δ' which makes the diagonal elements identical is unique. This identifies δ, and then $\gamma = b - \delta$. \(\square\)
ix. Proof of theorem 7.

A calculation shows that $D_{\gamma, A, C} B$ is surjective for all models in the interior of \mathcal{M}, and so the implicit function theorem implies that if $B(\phi, \gamma, \delta, A, C) = B$, and (ϕ', δ') is sufficiently near to (ϕ, δ), there are parameters γ', A' and C' such that $B(\phi', \gamma', \delta', A', C') = B$. \hfill \Box

x. Proof of lemma 4.

The direct homophily effect, scaled by β, has no effect on individuals’ preferences over actions. Let \tilde{g}_1 denote the set-valued random variable whose values are the members of group 1 realized at the end of the first stage. The value of being in a group 1 conditional on $\tilde{g}_1 = g$ is

$$V_{ig} = \frac{1}{2(1 + \phi)} \left(\phi^2 E\{\bar{\omega}_{-i}|g\}^2 - \rho(1 + \rho) E\{\bar{\omega}_{-i}^2|g\} \right)$$

$$+ 2 E\{\bar{\omega}_{-i}|g\} (x_i + \epsilon_i) + (x_i + \epsilon_i)^2 - \beta \sum_{j \in g} (x_j - x_i)^2$$

where $\bar{\omega}_{-i}$ is the average choice of members of g. (This comes from the first-order conditions, and substituting back.) The utility difference between g and $h = V/g$ is

$$\Delta V|_{g,h} = \frac{\rho}{2(1 + \rho)} \left(2 \left(E\{\bar{\omega}_{-i}|g\} - E\{\bar{\omega}_{-i}|h\} \right) \epsilon_i + \right.$$

$$\left. - 2 \left(E\{\bar{\omega}_{-i}^2|g\} - E\{\bar{\omega}_{-i}^2|h\} \right) - \rho(\text{Var}\{\bar{\omega}_{-i}|g\} - \text{Var}\{\bar{\omega}_{-i}|h\}) \right) -$$

$$\beta \left(\sum_{j \in g} (x_j - x_i)^2 - \sum_{j \in h} (x_j - x_i)^2 \right)$$

Now expect over \tilde{g} to see that if $E\{\bar{\omega}_{-i}\} - E\{\bar{\omega}_{-i}\} > 0$, then ΔV_{ig} is increasing in ϵ_i, and so g is preferred to V/g whenever ϵ_i is large enough. \hfill \Box
xi. Proof of theorem 8

We prove this by solving the game for a several different choices of \(x \), and using the answers together to make inferences about parameter values. First, consider identical \(x_i \)'s for every individual, say \(x_i \equiv 1 \). It is straightforward to show that there is a common cutoff \(\varepsilon^* \) such that individuals with \(\varepsilon_i > \varepsilon^* \) go to, say, location \(a \), and the remainder go to \(b \). For the individual who choose location \(z \),

\[\omega_i = \gamma + \delta + \frac{\phi}{1 + \phi} E_z \{ \varepsilon_i \} + \frac{1}{1 + \phi} \varepsilon_i, \]

where \(E_z \{ \varepsilon_i \} \) is the expected value of \(\varepsilon_i \) conditional on the location, that is, either above or below \(\varepsilon^* \). (Recall that the \(\varepsilon_j \) are all iid.) Compute the expected value of \(\omega_i \) at each location:

\[E_z \{ \omega_i \} = \gamma + \delta + E_z \{ \varepsilon_i \}. \]

The expectations on the left are known to the econometrician. The probability of appearing at \(a \) is \(\Pr \{ \varepsilon_i \geq \varepsilon^* \} \). Thus we have a third equation

\[\Pr \{ \varepsilon_i \geq \varepsilon^* \} E_a \{ \omega_i \} + \Pr \{ \varepsilon_i < \varepsilon^* \} E_b \{ \omega_i \} = E \{ \omega_i \}. \]

Since the econometrician knows \(E \{ \varepsilon_i \} \), he can compute the three unknowns; the two conditional expectations and \(\gamma + \delta \).

Next we examine a second-stage game in which one individual, say individual \(1 \), has \(x_1 = k \), and the remaining \(x_i = 1 \). Again, there are thresholds \(\varepsilon_1^* \) and \(\varepsilon_2^* \) for the players with \(x_i = k \) and \(1 \), respectively, and we suppose that those above the threshold go to \(a \) while those below go to location \(b \). An equilibrium computation shows the following: If a group \(g \) which includes individual \(1 \) assembles at \(a \), then the second stage equilibrium has the property that for any person \(i \neq 1 \) in \(g \),

\[E_a \{ \omega_1 | x_1 = k \} - E_a \{ \omega_i | x_1 = k \} = \]

\[\frac{|g| - 1}{|g| - 1 + r} (E_a \{ \varepsilon_1 | x_1 = k \} - E_a \{ \varepsilon_i | x_1 = k \} - (k - 1) \gamma) (1 - r), \]

where \(r = \phi/(1 + \phi) \), and that \(E_a \{ \omega_1 | x_1 = k \} > E_a \{ \omega_i | x_1 = k \} \). The ratio of this difference for two differently-sized groups with the same \(k \) determines \(\phi \).
Furthermore, if \(g^* \) has at least two members, we also know that for this group, \(\mathbb{E}_b \{ \omega_i \mid x_1 = k \} = \gamma + \delta + \mathbb{E}_b \{ \epsilon_i \mid x_1 = k \} \). Since \(\gamma + \delta \) has already been identified and since \(\mathbb{E}_b \{ \omega_i \mid x_1 = k \} \) is observable, \(\mathbb{E}_b \{ \epsilon_i \mid x_1 = k \} \) can be computed. This is the same for all individuals with \(x = 1 \), and is group-independent.

The probability that individual \(i \) locates at \(b \) is observable, and \(\mathbb{E} \{ \epsilon_i \} \) is a priori knowledge, so \(\mathbb{E}_a \{ \epsilon_i \mid x_1 = k \} \) is identified. This gives the equation

\[
\mathbb{E}_a \{ \epsilon_1 \mid x_1 = k \} - k\gamma = z_{ak}^k
\]

where \(z_k \) can be computed from what is observable and the a priori knowledge of \(\mathbb{E} \{ \epsilon_i \} \). Now repeat the construction with individual 1 at location \(b \) to get

\[
\mathbb{E}_b \{ \epsilon_1 \mid x_1 = k \} - k\gamma = z_{bk}^k.
\]

Since the probability of individual 1 appearing at each location is known, expect over the location to derive

\[
\mathbb{E} \{ \epsilon_1 \} - k\gamma = \Pr \{ \epsilon_1 \geq \epsilon^*_1 \} z_{ak}^k + \Pr \{ \epsilon_1 < \epsilon^*_1 \} z_{bk}^k,
\]

and so \(\gamma \) can be computed. Knowing \(\gamma \) gives \(\delta \), which proves the claim for \(\mathcal{M}_{end} \) with known \(\mathbb{E} \{ \epsilon \} \).

If the conditional expectations are known, take any group \(g \) with more than 1 person that forms with positive probability given \(x \). Then \(\mathbb{E} \{ \omega \mid x, g \} - \mathbb{E} \{ \epsilon \mid x, g \} \) is linear in \(x \). The probabilities of entry into \(g \) are continuous in \(x \), so this difference in fact is well-defined on an open set around \(x \). From this infer from group \(g \) to get \(\mathcal{B}^g(m) \), the structural form for group \(g \). The result now follows from the proof of theorem 2.

The parameter \(\beta \) has no role in the second stage game. It determines only the probabilities of group formation. Consequently \(\beta \) must be identified off the participation constraint, that the ex-ante expected value of going to location \(a \) is at least that of going to \(b \) for those who chose to go to \(a \), and so forth. The threshold \(\epsilon \) in any game is determined by the equality of the expectation of the interim payoffs over which groups will form at \(a \) and \(b \) given the second-stage equilibrium strategies. Consider then, a situation with heterogeneous \(x_i \)’s. On the one hand, \(\epsilon^* \) is known given a priori knowledge of \(\rho \), because the probabilities of a given individual appearing at either location in equilibrium are known, and the cdf of \(\epsilon_i \) is strictly increasing. Then the equilibrium condition defining \(\epsilon^* \), that
when $\varepsilon_i = \varepsilon^*$ the individual is indifferent (ex-ante) between a and b, identifies β. The prior belief ρ is needed not just to determine ε^*, but also because the participation constraints involve differences in variances of the ε_i conditional on location, and there are not enough equations to pin these down even given \textit{a priori} knowledge of the unconditional variance of the ε_i. \hfill \Box
References

